

Measure the binding of molecules to membrane targets on cells

Real-Time Interaction Cytometry (RT-IC)

Characterize interactions involving antibodies, receptors, and membrane targets where they matter most: **in their native environments**.

- Native transmembrane domain folding
- Native target density

- Target mobility in fluid membrane
- Native co-interactions

Automated analysis of **binding kinetics**, **affinity**, and **avidity** on cells:

- Association rate constant kon
- Dissociation rate constant k_{off}
- Binding stability / half-life t_{1/2}
- Dissociation constant K_d

heliX^{cyto} chips feature flow-permeable, bio-compatible polymer cages, which physically retain any type of cells.

Trap sizes are tailored to capture single cells.

heliXcyto instrument

dynamicBIOSENSORS

RT-IC measurement principle

for the automated analysis of kon and koff binding rates on cells

Features

Easy-to-use

- Automated workflows
- Applicable to any cell type, living or fixed
- Compatible with complex media
- Built-in microscope for visual inspection of cells

High sensitivity

- Single & multiple cell analysis
- Low membrane protein expression levels
- Ultra-sensitive fluorescence detection
- High performance microfluidics for resolving fast and slow kinetics

Hands-on workflow

from cell culture to interaction data in three simple steps

Hands-on time: approx. 30 min.

Applications

in immuno-oncology, cell therapies, and many more

Biologics development

On-cell characterization of monoand multi-specific antibodies, and other biologics.

Adoptive cell therapies

CAR-T cells, TCR engineering, NKs, new CMC modalities.

New targets

Biophysical analysis of so far inaccessible cell surface receptors (GPCRs, ...).

