MOLECULAR INTERACTIONS

dynamic BIOSENSORS

helix

heliX[®]

Binding Kinetics Conformational Changes

www.dynamic-biosensors.com

The **heliOS** network

Network of autonomous **helix**[®] modules, simply plug-and-play. **Reliable and robust** by built-in system redundancy for uninterrupted operation.

High PERFORMANCE sensing

switchSENSE[®] static and dynamic measurement modes for the analysis of binding kinetics and molecular conformations.

heliX[®] single unit

4 signals, real-time

4 single-photon counters for highest fluorescence sensitivity. Data collection at 10 ms to resolve even the fastest kinetics in real-time.

to scale-up throughput to your needs.

Highly-automated THROUGHPUT

Combine as many **heliX**[®] modules as you require

5 chips, automatically exchangeable and NFC-tagged for seamless traceability.

(

Simplistic single-channel design, made from durable glass, withstanding highest flow rates and corrosive chemicals.

Disposable, maintenance-free.

Autosampler

384 and 96 well plates. Sample temperature 15 – 40°C, sample compartment $4 - 40^{\circ}$ C.

For further information visit www.dynamic-biosensors.com/heliX Contact info@dynamic-biosensors.com to speak to our application team about methodologies or to arrange a demonstration.

Ease-of-Use

Powerful software

For efficient planning and analysis of binding and conformation experiments.

Intuitive for the novice and configurable for the expert analysis of big data.

Control and monitor **heliX**[®] modules from **anywhere**.

switchSENSE[®] – Comprehensive biophysical information,

in one measurement

Binding Parameters k_{on}, k_{oee}, K_o, avidity

DNA/RNA Binders & Enzymes

Transcription factors, helicases, polymerases (COVID-19), DNA repair, gene editing, ...

Conformational Changes in Proteins

Structure-activity-relationships

Multi-specific Binders Antibodies for cancer immunotherapy, PROTACs, ...

Multi-parameter analysis with switchSENSE®

Affinity, dose response	$\rm K_{_{D'}}$ IC ₅₀ , fM sensitivity
Kinetics	k_{on}, k_{off}
Avidity, bispecifics	Two-color detection

Multiple measurement modes

alternating voltages

DYNAMIC mode hydrodynamic friction

STATIC mode fluorescence proximity sensing

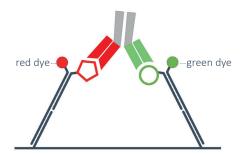
Kinetics on Cells

Real-time binding analysis on living cells

Conformational changes & protein diameter

hydrodynamic friction change, folding/unfolding, agglomeration

Thermodynamics


Nucleic and enzyme activity

ΔΗ, ΔS, ΔG

k_{cat.} K_M, k_{fxo}

TWO-COLOR detection fluorescence & friction sensing

dynamic BIOSENSORS

heliX [®] system comparison				
	heliX	heliX ⁺	Double-heliX	4-heliX Bundle
No. of chips, auto-exchangeable	1	5	10	20
No. of real-time signals	2	4	8	16
No. of well-plates / wells	1/96	1/384	2 / 768	4 / 1536
Fluorescence channels	One color	Two Colors		
Sampling rate	1 datapoint/s	100 datapoints/s		
Temperature	[1] T _{const.} = 25°C or 37°C	[1] any constant temperature from 15° to 40°C [2] variable temperature, ramp speed up to 10°C/min		
Measurement modes	[1] Molecular Dynamics [2] Fluor. Proximity Sens.	 Molecular Dynamics (molecular friction) Fluorescence Proximity Sensing (FPS) Fluorescence resonance energy transfer (FRET) 		
Kinetics	k _a = 10 ³ >10 ⁷ M ⁻¹ s ⁻¹ k _d = 10 ⁻⁶ 0.2 s ⁻¹ K _D = 0.1 pM - 1 mM	k _a = 10 ³ >10 ⁸ M ⁻¹ s ⁻¹ k _d = 10 ⁻⁶ 30 s ⁻¹ K _D = 50 fM - 1 mM		