

The Pump-It Tube ${ }^{\circledR}$ Woven Dewatering Bag Specifications

Minimum Average Fabric Values

Properties

Mass per Unit Area (oz/yd2)
Grab Tensile Strength, MD x CD (lbs)
Grab Elongation, MD x CD (\%)
Trapezoid Tear, MD x CD (lbs)
Puncture (lbs)
Burst Strength (psi)
Permittivity (sec-1)
A.O.S. (U.S. sieve - (mm)

Water Flow Rate (gal/ft2/min)

ASTM

D-3776
D 4632
D 4632
D 4533
D 4833
D 3786
D 4491
D 4751
D-4491

Value
5.2
297×223
58 / 59
81×75
99
340
2.60

60
192

Install the Pump-It Tube ${ }^{\circledR}$ Dewatering Bag on a slope so incoming water flows downhill through the Pump-It Tube ${ }^{\oplus}$, without creating more erosion. Attach the neck of the Pump-It Tube ${ }^{\oplus}$ with the D-Ring and Strap (secured to the neck of the Pump-It Tube) to the discharge hose. To increase the efficiency of filtration, place the bag on an aggregate or hay bale bed (elevate Pump-It Tube ${ }^{\circledR}$) to maximize water flow through the surface area of the Tube. The Pump-It Tube ${ }^{\circledR}$ is full when it no longer can efficiently filter sediment or pass water at a reasonable rate. Use of manifold enables larger fill capacity per bag. Use of manifold also enables the elimination of downtime. With flow rates at $192 \mathrm{gl} / \mathrm{ft} 2 / \mathrm{min}$, the max flow rate per Pump-It Tube ${ }^{\circledR}$, varies per size of unit (see below chart), the type and amount of sediment discharged into the Pump-It Tube ${ }^{\circledR}$, the type of ground, rock or other substance under the bag and the degree of the slope on which the bag lies. Under comparable circumstances the Woven Pump-It Tube ${ }^{\circledR}$ will accommodate flow rates 2.5 x's that of their non-woven dewatering bag counterparts. Use of excessive flow rates or overfilling Pump-It Tubes ${ }^{\circledR}$ with sediment will cause ruptures of the bags. Dispose of the Pump-It Tube ${ }^{\circledR}$ as directed by the site engineer. If allowed the Pump-It Tube ${ }^{\circledR}$ may be cut open and the contents seeded after removing visible fabric.

Pump-It Tube ${ }^{\oplus}$ Sizing	Pump-It Tube ${ }^{\oplus}$ Max Flo*	Max Gas Pump Size**
FW2005PT $\left(20^{\prime \prime} \times 05^{\prime}\right)$	$1600 \mathrm{gl} / \mathrm{min}$	$3^{\prime \prime}$
FW2010PT $\left(20^{\prime \prime} \times 10^{\prime}\right)$	$3200 \mathrm{gl} / \mathrm{min}$	$4^{\prime \prime}$
FW2020PT $\left(20^{\prime \prime} \times 20^{\prime}\right)$	$6400 \mathrm{gl} / \mathrm{min}$	$4^{\prime \prime}$
FW4005PT $\left(40^{\prime \prime} \times 05^{\prime}\right)$	$3200 \mathrm{gl} / \mathrm{min}$	$5^{\prime \prime}$
FW4010PT $\left(40^{\prime \prime} \times 10^{\prime}\right)$	$6400 \mathrm{gl} / \mathrm{min}$	$6^{\prime \prime}$
FW4020PT $\left(40^{\prime \prime} \times 20^{\prime}\right)$	$12800 \mathrm{gl} / \mathrm{min}$	$6^{\prime \prime}$
FW8010PT $\left(80^{\prime \prime} \times 10^{\prime}\right)$	$12800 \mathrm{gl} / \mathrm{min}$	$* * *$
FW8020PT $\left(80^{\left.\prime \prime \times 20^{\prime}\right)}\right.$	$25,600 \mathrm{gl} / \mathrm{min}$	$* * *$
FW8030PT $\left(80^{\left.\prime \prime \times 30^{\prime}\right)}\right.$	$38,400 \mathrm{gl} / \mathrm{min}$	$* * *$
FW8045PT $\left(80^{\left.\prime \prime \times 45^{\prime}\right)}\right.$	$56,800 \mathrm{gl} / \mathrm{min}$	$* * *$

*Flow rates based on following assumptions. 1. Laying on ground 2. Clean Water.
** Electric Pumps require larger Pump-It Tube, or elevation of Pump-It Tube ${ }^{\circledR}$ due to increased flow rate.
** Pump Size recommendations vary on sediment load, or total suspended solids.
*** Increase in pump size requires user to use larger Pump-It Tubes ${ }^{\circledR}$, to split flow to multiple Pump-It Tubes ${ }^{\circledR}$, or to elevate Pump-It Tubes ${ }^{\circledR}$ to flow through entire face of Pump-It Tube ${ }^{\circledR}$.

