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Abstract

Polyphenol-rich pomegranate juice has been shown to have benefit as a neuroprotectant in

animal models of neonatal hypoxic-ischemia. No published studies have investigated mater-

nal polyphenol administration as a potential neuroprotectant in at-risk newborns, such as

those with intrauterine growth restriction (IUGR). This was a randomized, placebo-con-

trolled, double-blind pilot study to investigate the impact of maternal pomegranate juice

intake in pregnancies with IUGR, on newborn brain structure and function at term-equivalent

age (TEA). Mothers with IUGR at 24–34 weeks’ gestation were recruited from Barnes-Jew-

ish Hospital obstetrical clinic. Consented mothers were randomized to treatment (8 oz.

pomegranate juice) or placebo (8 oz. polyphenol-free juice) and continued to take juice daily

from enrollment until delivery (mean 20.1 and 27.1 days, respectively). Infants underwent

brain MRI at TEA (36–41 weeks’ gestation). Brain measures were compared between

groups including: brain injury score, brain metrics, brain volumes, diffusion tensor imaging

and resting state functional connectivity. Statistical analyses were undertaken as modified

intention-to-treat (including randomized participants who received their allocated interven-

tion and whose infants received brain MRI) and per-protocol (including participants who

strictly adhered to the protocol, based on metabolite status). Seventy-seven mothers were

randomized to treatment (n = 40) or placebo (n = 37). Of these, 28 and 27 infants, respec-

tively, underwent term-equivalent MRI. There were no group differences in brain injury, met-

rics or volumes. However, treatment subjects displayed reduced diffusivity within the

anterior and posterior limbs of the internal capsule compared with placebo. Resting state

functional connectivity demonstrated increased correlation and covariance within several

networks in treatment subjects, with alterations most apparent in the visual network in per-

protocol analyses. Direct effects on health were not found. In conclusion, maternal
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pomegranate juice intake in pregnancies with known IUGR was associated with altered

white matter organization and functional connectivity in the infant brain, suggesting differ-

ences in brain structure and function following in utero pomegranate juice exposure, war-

ranting continued investigation.

Clinical trial registration. NCT00788866, registered November 11, 2008, initial partici-

pant enrollment August 21, 2012.

1. Introduction

Hypoxic-ischemic injury is the most common contributor to brain injury in the term-born

infant. Occurring in 2 per 1000 live births, it results in substantial morbidity and mortality,

contributing to almost a quarter of newborn deaths worldwide [1–3]. Despite advances in neo-

natal intensive care, including recent widespread implementation of therapeutic hypothermia

[2, 4, 5], as many as 35% of survivors experience significant long-term neurodevelopmental

deficits [3, 5, 6].

Oxidative stress represents a key pathophysiological mechanism in hypoxic-ischemic neu-

ronal injury involving free radical production and a destructive inflammatory cascade [7],

with devastating consequences on the developing brain [8]. Critically, brain injury following

hypoxic-ischemia is a dynamic process, evolving over hours to weeks [9]. By the time an infant

with injury presents secondary degeneration has often already commenced [10, 11], limiting

the potential benefit of neuroprotective strategies started ex utero. Shifting treatment focus to

the fetus in utero thus represents a unique window for therapeutic intervention in hypoxic-

ischemia.

Polyphenols are a promising class of neuroprotectants shown to exert their effects directly

on the brain [12, 13]. These antioxidants, particularly ellagitannins, are naturally-occurring in

foods such as berries, nuts, grapes and teas, and have demonstrated preventative effects in ani-

mal models of chronic disease, such as cancer, diabetes, cardiovascular, renal and neurodegen-

erative diseases [12, 14–18]. One of the highest polyphenol-containing dietary supplements

available commercially is pomegranate juice (POM), which has been studied in vitro and in
vivo without any side effects [17, 19, 20]. Animal models of hypoxic-ischemic injury have doc-

umented its neuroprotectant effects following maternal supplementation [21, 22], with evi-

dence for dose and time-dependent effects [22]. Relatedly, polyphenols have been shown to

attenuate oxidative stress and apoptosis in cultured human trophoblasts, implicating a role for

p53 downregulation [23, 24]. Collectively, these studies suggest prenatal administration of

polyphenols may aid in neuroprotection for infants with hypoxic-ischemic injury.

To date, no human study has investigated maternal polyphenol administration as a neuro-

protectant in at-risk newborns. To test if in utero administration can protect against hypoxic-

ischemia, a model of prenatal brain injury is required. Intrauterine growth restriction (IUGR),

defined as growth in utero that fails to meet the endogenous potential of the fetus [25, 26], rep-

resents one such model. Importantly, fetuses with IUGR often suffer long-term placental insuf-

ficiency resulting in chronic hypoxia similar to hypoxic-ischemic injury following acute

perinatal injury [27]. Furthermore, the vulnerability of the developing brain in infants with

IUGR has been demonstrated in term-equivalent magnetic resonance imaging (MRI) studies

[28, 29].

The current exploratory study sought to investigate relationships between maternal POM

supplementation and infant brain macrostructure, microstructural organization and func-

tional connectivity in pregnancies with IUGR.
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2. Materials and methods

2.1. Trial design and participants

This was a randomized, controlled, double-blind pilot study of maternal POM consumption dur-

ing pregnancy. The sample was recruited from an inner city US population, with the study con-

ducted at Barnes-Jewish Hospital in St Louis, Missouri during 2012–2014. A study coordinator

evaluated expectant mothers receiving prenatal care for enrollment. Inclusion criteria were: 1)

fetal diagnosis of IUGR defined by estimated fetal weight<10th percentile for gestational age [25,

26]; 2) 24–34 weeks’ gestation based on ultrasound or reliable clinical dating by ACOG standards

[30]. Exclusion criteria were: 1) major congenital abnormalities; 2) known fetal chromosomal dis-

order; 3) maternal illicit drug use; 4) maternal HIV and/or hepatitis C infection; 4) premature rup-

ture of membranes. All protocols were in accordance with the 1964 Helsinki declaration and its

amendments or comparable ethical standards. The study was approved by the Washington Uni-

versity Institutional Review Board. Written informed consent was obtained for all participants.

2.2. Initial visit

Sociodemographic, health status and pregnancy information were collected for consented par-

ticipants by questionnaires. Maternal blood was drawn at enrollment to measure baseline

metabolite levels, specifically urolithin A (UA) and dimethylellagic acid glucuronide (DMEAG).

2.3. Randomization

Participants were randomized by a computerized random number generator to treatment or

placebo in a 1:1 ratio, and completed either a daily regimen of 8 oz. of 100% pomegranate juice

(POM Wonderful, Los Angeles, CA) or a control beverage, respectively. Allocation conceal-

ment was achieved using sequentially numbered opaque sealed envelopes generated using a

random number generator with each opaque envelope pulled in numerical sequence. Total

polyphenols in the beverages were determined by the Folin-Ciocalteu method calibrated by a

gallic acid standard curve and reported as gallic acid equivalents (GAE) [20, 31, 32]. Pome-

granate juice (16o Brix) contained no less than 700mg GAE. The control beverage (16o Brix)

was polyphenol-free (no more than 38 mg GAE), matched for sensory characteristics and calo-

rie content. The juice was labeled A or B such that the investigative team, participants and

healthcare providers remained blinded. Participants were instructed to begin juice consump-

tion following initial blood draw at enrollment through delivery.

2.4. Follow-up and compliance

Participants were followed from enrollment until delivery. Participants kept a daily diary doc-

umenting the number of days of juice consumption. Maternal and cord blood was collected at

delivery and analyzed to determine change in polyphenol levels from baseline and confirm the

presence of transferred pomegranate metabolites. Mode of delivery, complications, APGAR

scores, weight, head circumference and length were recorded. Clinically-stable infants under-

went term-equivalent brain MRI. While formal neurodevelopmental follow up was planned to

take place at 18–24 months of age, this was not conducted due to principal investigator reloca-

tion and study cessation.

2.5. Image acquisition

Infants were scanned without sedation at 36–41 weeks postmenstrual age on a Siemens Trio

3T scanner (Erlangen, Germany) [33]. Images included T1-weighted (TR/TE 1550/3.05 ms,

voxel size 1×1×1.3 mm3) and T2-weighted (TR/TE 8210/161 ms; voxel size 1×1×1 mm3)
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sequences. Diffusion data were obtained using a spin-echo echo-planar-image (EPI) sequence

with 27 b values ranging from 0 to 1200 s/mm2 and spatial resolution 2×2×2 mm3. A gradient

echo, EPI sequence sensitized to T2
� blood oxygen dependent (BOLD) signal changes (TR/TE

2910/28 ms, voxel size 2.4×2.4×2.4 mm3) was used to collect 200 frames (~10 minutes) of rest-

ing state-functional connectivity MRI data (fcMRI). Images were interpreted by pediatric neu-

roradiologists (Drs. Shimony and McKinstry) and a neonatologist (TEI.).

2.6. Image analysis

Brain abnormalities were scored on T1- and T2-weighted images using the Kidokoro scoring sys-

tem [34]. Brain metrics were calculated on aligned T2-weighted images [35]. Total and regional

brain volumes were estimated using MANTiS (S1 Fig) [36]. Diffusion data was processed using a

tensor model [37]. Images were registered to an in-house neonatal T2 atlas and distortion and

motion corrected using FSL [38]. Regions of interest (ROIs) were manually drawn on each brain

[37] using Analyze (Mayo Clinic, Rochester, MN) in the corpus callosum and bilateral anterior

and posterior limbs of the internal capsule (ALIC, PLIC), optic radiations, frontal lobes, cingulum

bundle and centrum semiovale, to generate diffusion tensor imaging (DTI) measures of fractional

anisotropy (FA), mean (MD), radial (RD) and axial diffusivity (AD). Ten subjects were excluded

from DTI analysis due to processing failure (6 control, 4 treatment).

fcMRI data was processed as previously described [39, 40]. Frames with significant motion

(>0.5 mm displacement) were excluded [41]; at least 5 minutes of low-motion BOLD data was

required for inclusion. Correlation matrices were constructed using 214 cortical and subcorti-

cal grey matter ROIs [42–44]. ROI:ROI correlation coefficients were computed using the Pear-

son product moment formula [45], and Fisher z-transformed [46]. Time series covariance

estimates were computed to preserve sensitivity for detecting fcMRI alterations [45, 47]. Com-

posite scores providing mean correlation and covariance within resting state networks (RSN)

and between each network pair were computed to reduce data dimensionality and suppress

sampling error [48]. Eighteen subjects were excluded from analysis due to no data (5 control, 2

treatment), motion (2 control, 8 treatment) or processing failure (1 treatment).

2.7. Safety assessment

Safety was assessed by analysis of adverse events; laboratory investigations, including assess-

ment of sepsis and necrotizing enterocolitis (NEC), cardiorespiratory complications, and eval-

uation of intraventricular hemorrhage (IVH) on clinical ultrasound [49]. Assessors were

unaware of study-group allocation.

2.8. Outcome measures

Primary outcomes: Term-equivalent MRI measures of brain structure and connectivity

included: brain injury, metrics and volumes; ROI measures of FA, MD, AD and RD; and net-

work composite correlation and covariance measures.

Secondary outcomes: Measures of treatment compliance included number of days of juice

consumption, maternal blood metabolite concentrations (enrollment and delivery) and cord

blood metabolite concentrations. Safety outcomes included NICU and special care nursery

admission, and incidences of respiratory distress, resuscitation, IVH, sepsis and NEC.

2.9. Statistical analysis

Analyses were conducted using SAS 9.4 (SAS Institute, Cary, N.C.) and STATA 13.1 (Stata-

Corp, Texas, USA). Power calculations were based on effect sizes with regard to the primary
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brain outcome measures of a comparable study in high-risk infant populations, which

reported standardized effect sizes between 0.7–1.3 [50]. Accounting for the feasibility of our

study, 80 subjects (40 per study arm) yields 80% power based on a two-tailed test of signifi-

cance (α = 0.05) to detect effect sizes of at least 0.7.

Modified intention-to-treat (mITT) analyses were conducted including randomized partic-

ipants who received their allocated intervention and who underwent brain MRI. This mITT

design was necessary given the primary outcome measure–MRI measures of brain structure

and connectivity–could only be assessed for infants who underwent term-equivalent brain

MRI. Per-protocol (PP) analyses were conducted including participants who strictly adhered

to the protocol based on metabolite status, i.e. comparing metabolite-positive (UA or

DMEAG) treatment participants with metabolite-negative placebo participants. Group differ-

ences in brain outcome measures were assessed using generalized linear models adjusted for

postmenstrual age at scan, except for brain injury which was assessed using Fisher’s exact test

for categorical variables due to small cell numbers. Differences in compliance and safety mea-

sures were tested using χ2 or Fisher’s exact test for categorical variables and Student t-tests for

continuous variables. For outcome variables with skewed distributions that were unable to be

normalized by transformation, quantile regression was used to estimate the conditional

median of the response variable. Due to the exploratory nature of this study, we did not adjust

for multiple corrections [51, 52].

3. Results

Eighty eligible mothers were enrolled and randomly assigned to treatment and placebo groups

(Fig 1). Two mothers withdrew from the study prior to randomization. One subject was

excluded for technical reasons. Following randomization, 6 mothers (7.7%) did not receive the

allocated intervention, of whom 3 requested withdrawal (placebo), 1 was excluded due to posi-

tive drug screen (treatment) and 2 were excluded due to congenital anomalies (treatment). A

total of 34 (91.9%) placebo and 37 (90.2%) treatment subjects were followed to delivery, of

whom 27 (79.4%) and 28 (75.7%) underwent term-equivalent MRI, respectively.

3.1. Baseline characteristics and clinical outcomes

The groups were similar in all baseline and demographic characteristics in both mITT and PP

analyses, including IUGR severity as indicated by estimated fetal weight and growth percen-

tiles at enrollment and birth weight Z-scores [53] (Table 1). There were no differences in other

clinical outcomes between groups except for a modestly lower cord arterial base excess in the

treatment group compared with placebo in the PP analysis. There were no differences between

participants lost to follow-up (n = 22) and those who underwent infant MRI (n = 55), except

for a greater percentage of preterm infants lost to follow-up (<37 weeks: 13 (59%) v. 12 (23%),

p = 0.002; <34 weeks: 10 (45%) v. 3 (5%), p<0.001), although this was not associated with

treatment arm.

3.2. Brain outcomes

While there was no difference in brain injury (S1 Table), brain metrics (S2 Table) or brain vol-

umes (S3 Table) between treatment and placebo subjects, we observed group differences in

DTI measures. Specifically, the treatment group displayed reduced MD compared with pla-

cebo in the ALIC, PLIC and centrum semiovale which was mediated by reduced RD (Fig 2A,

S4 Table). These differences remained in PP analysis for the left ALIC and right PLIC (Fig 2B,

S4 Table). The treatment group also demonstrated increased FA in the right ALIC and right

cingulum, although these differences did not remain in PP analysis.
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fcMRI correlation and covariance matrices from mITT and PP analyses are shown in Figs 3

and 4. RSNs demonstrating the greatest differences in the treatment group are identifiable in

Table 2, S2 and S3 Figs, which include composite mean correlation and covariance measures.

In the mITT analysis, there was increased correlation in the subcortical network in treatment

compared with placebo subjects (Table 2, Fig 3, S2 Fig). Further, in PP analysis we observed

increased fcMRI measures in several networks in metabolite-positive treatment subjects, rela-

tive to metabolite-negative controls. Specifically, there was increased correlation within the

visual network (Table 2, Fig 3, S2 Fig) and increased covariance within subcortical, visual,

salience and default mode networks (Table 2, Fig 4, S3 Fig).

3.3. Compliance

Juice consumption and maternal metabolite presence (either UA or DMEAG present) at

enrollment did not differ between groups (Table 3). There was a higher incidence of maternal

metabolite presence at delivery in the treatment group than placebo, however, almost one-

third of treatment subjects did not have maternal metabolites and almost one-half of placebo

subjects had metabolites. Sixty-one percent of treatment and 33% of placebo subjects tested

positive for cord blood metabolite presence. To address this variability and allow stricter inves-

tigation of relationships between POM intake and brain structure and function, PP analyses

were performed using only metabolite-positive treatment, and metabolite-negative placebo

subjects (Table 3).

3.4. Safety assessment

There were no group differences with respect to any complications (Table 4). Specifically,

there were no complications noted in either group consistent with pulmonary hypertension or

any clinical evidence consistent with premature closure of a patent ductus arteriosus (PDA).

As no adverse events were found to be attributable to POM, no stopping rules were

implemented.

4. Discussion

This is the first study reporting relationships between maternal POM intake and brain struc-

ture and function in infants with IUGR. While we did not observe differences in brain macro-

structure, we report regional differences in white matter microstructure and functional

connectivity in association with POM intake, suggesting potential in utero effects on the new-

born brain.

The antioxidant effects of POM have been demonstrated in vitro and in vivo without any

proven side effects [17, 19, 20]. Loren et al. reported over 60% reduction in brain tissue loss in

mice with hypoxic-ischemia born to dams receiving POM [21]. Further, maternal POM sup-

plementation was recently shown to attenuate maternal inflammation-induced rat fetal brain

injury [54], and rescue hypoxia-induced fetal growth restriction in pregnant mice [55]. In the

current study, the lack of an observable association with brain injury may reflect its low inci-

dence, which necessitated grouping all infants with injury and possibly masked potential bene-

fits in those with milder injury. Indeed, therapeutic hypothermia has shown greater benefits in

subjects with less severe injury [56].

Brain metrics have been shown to reliably quantify growth in high-risk infants, such as

those born preterm [35, 57]. However, they are only a surrogate measure of brain volume,

Fig 1. Participant flowchart.

https://doi.org/10.1371/journal.pone.0219596.g001
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Table 1. Baseline characteristics and clinical outcomes of study participants.

MODIFIED INTENTION-TO-TREAT PER-PROTOCOL

Variable Placebo

(n = 27)

POM

(n = 28)

Placebo, Metabolite–ve

(n = 15)

POM, Metabolite +ve

(n = 17)

Baseline Characteristics
Maternal age (years), mean (SD) 26.9 (6.7) 24.4 (6.1) 25.9 (7.3) 24.7 (6.9)

Race, Black, n (%) 17 (63) 21 (75) 9 (60) 12 (71)

Race, White, n (%) 8 (30) 7 (25) 5 (33) 5 (29)

Smoking, n (%) 7 (26) 7 (25) 5 (33) 4 (24)

Substance use, n (%) 0 (0) 0 (0) 0 (0) 0 (0)

Sickle cell disease, n (%) 0 (0) 0 (0) 0 (0) 0 (0)

Gestational age at enrollment, mean (SD) 30.5 (2.6) 30.8 (2.5) 30.4 (2.8) 30.8 (2.6)

Gestational age at enrollment, median (IQR) 31 (28, 33) 31.5 (29, 32.5) 31 (28, 33) 32 (29, 33)

Estimated fetal weight at enrollment (g), mean (SD) 1187.3 (374.8) 1194.5 (380.0) 1205.7 (414.2) 1184.6 (428.9)

Growth percentile at enrollment, mean (SD) 6.8 (2.0) 6.0 (2.1) 7.3 (2.1) 6.5 (2.2)

Steroids for fetal lung maturity, n (%) 1 (4) 2 (7) 0 (0) 1 (6)

Maternal & Delivery Outcomes
Gestational age at delivery, weeks, mean (SD) 37.4 (1.6) 36.8 (2.5) 36.9 (1.7) 37.1 (2.0)

PMA at MRI scan, weeks, mean (SD) 38.6 (1.3) 38.3 (1.6) 38.2 (1.2) 38.1 (1.5)

Preterm birth <37 weeks, n (%) 4 (15) 7 (25) 3 (20) 4 (24)

Preterm birth <34 weeks, n (%) 0 (0) 3 (11) 0 (0) 2 (12)

Mode of delivery (vaginal), n (%) 18 (67) 19 (68) 12 (80) 13 (76)

Meconium stained amniotic fluid, n (%) 1 (4) 1 (4) 1 (7) 1 (6)

Neonatal Outcomes
Sex, n (%) 13 (48) 13 (46) 8 (53) 8 (47)

Birthweight (g), mean (SD) 2536.6 (367.5) 2385.2 (476.7) 2344.7 (289.7) 2415.9 (378.8)

Birthweight Z-score, mean (SD) -1.03 (0.70) -1.09 (0.55) -1.23 (0.78) -1.10 (0.57)

APGAR score at 1 minute, median (IQR) 8 (8, 9) 8 (8, 8) 8 (7, 8) 8 (8, 8)

APGAR score at 5 minutes, median (IQR) 9 (9, 9) 9 (8.5, 9) 9 (9, 9) 9 (9, 9)

Cord arterial pH, mean (SD) 7.29 (0.05) 7.27 (0.05) 7.30 (0.05) 7.26 (0.05)

Cord arterial base excess, mean (SD) -2.55 (1.69) -2.97 (1.25) -2.54 (1.40) -3.00 (1.34)

Respiratory distress syndrome, n (%) 5 (19) 6 (21) 3 (20) 1 (6)

MODIFIED INTENTION-TO-TREAT PER-PROTOCOL

Variable Placebo

(n = 27)

POM

(n = 28)

Placebo, Metabolite–ve

(n = 15)

POM, Metabolite +ve

(n = 17)

Baseline Characteristics
Maternal age (years), mean (SD) 26.9 (6.7) 24.4 (6.1) 25.9 (7.3) 24.7 (6.9)

Race, Black, n (%) 17 (63) 21 (75) 9 (60) 12 (71)

Race, White, n (%) 8 (30) 7 (25) 5 (33) 5 (29)

Smoking, n (%) 7 (26) 7 (25) 5 (33) 4 (24)

Substance use, n (%) 0 (0) 0 (0) 0 (0) 0 (0)

Sickle cell disease, n (%) 0 (0) 0 (0) 0 (0) 0 (0)

Gestational age at enrollment, mean (SD) 30.5 (2.6) 30.8 (2.5) 30.4 (2.8) 30.8 (2.6)

Gestational age at enrollment, median (IQR) 31 (28, 33) 31.5 (29, 32.5) 31 (28, 33) 32 (29, 33)

Estimated fetal weight at enrollment (g), mean (SD) 1187.3 (374.8) 1194.5 (380.0) 1205.7 (414.2) 1184.6 (428.9)

Growth percentile at enrollment, mean (SD) 6.8 (2.0) 6.0 (2.1) 7.3 (2.1) 6.5 (2.2)

Steroids for fetal lung maturity, n (%) 1 (4) 2 (7) 0 (0) 1 (6)

Maternal & Delivery Outcomes
Gestational age at delivery, weeks, mean (SD) 37.4 (1.6) 36.8 (2.5) 36.9 (1.7) 37.1 (2.0)

PMA at MRI scan, weeks, mean (SD) 38.6 (1.3) 38.3 (1.6) 38.2 (1.2) 38.1 (1.5)

(Continued)
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with limited sensitivity for detecting group differences in small samples. Volumetric analyses

have demonstrated regional vulnerabilities within the hippocampus, brainstem and thalamus,

and the watershed zone in term newborns with hypoxic-ischemic injury [58, 59]. The existence

of corresponding regional neuroprotective effects of polyphenols remains unclear. While we

were likely underpowered to detect such effects, animal studies have reported protective effects

in hippocampal and cortical regions [21, 60–69].

It is plausible that responses to POM are partially mediated via mechanisms below the mac-

rostructural level. DTI investigations offer a complementary approach to conventional MRI,

providing added insight regarding microscopic white matter organization. Here, we observed

regional microstructural alterations in association with maternal POM intake, implicating the

ALIC and PLIC, cingulum and centrum semiovale; areas previously shown to be vulnerable to

the effects of hypoxic-ischemia [58, 70]. These findings were present in both mITT and PP

analyses. While definitive interpretation of DTI changes remains complicated [71, 72],

increased FA is observed in more mature white matter [73], while reduced FA likely reflects

axonal damage, reduced myelination and/or reduced neuroglial packing density [74, 75], and

is often reported in very preterm infants (VPT) relative to term born peers [76]. MD is a sum-

mary measure of diffusivity, with increased values reflecting immature, poorly developed

white matter [75, 77], as often seen in VPT infants compared with full term peers [76]. AD and

RD provide complementary information; the former reflecting axonal organization and den-

sity, with RD reflecting alterations in myelination [75, 78]. Thus, we postulate in utero POM

exposure may lead to improved maturation, via neuroprotective mechanisms such as axonal

sparing and/or remyelination. This appears to be supported by evidence of improved motor

function in association with pomegranate supplementation in mice models of cytotoxic radia-

tion [79], and cognitive and behavioral improvements in mouse models of Alzheimer’s [80],

implicating a role for enhanced synaptic plasticity [81].

In utero POM exposure may also lead to changes in functional networks in the developing

brain. fcMRI delineates the brain’s functional architecture, including widely-distributed, corti-

cally-based RSNs known to be co-activated by task [82], several of which have been described

in infants [39, 47]. In the current study, metabolite-positive treatment subjects displayed

increased connectivity, characterized by greater correlation and covariance, within visual, sub-

cortical, salience and default mode networks. Consistent with previous reports, covariance was

Table 1. (Continued)

Preterm birth <37 weeks, n (%) 4 (15) 7 (25) 3 (20) 4 (24)

Preterm birth <34 weeks, n (%) 0 (0) 3 (11) 0 (0) 2 (12)

Mode of delivery (vaginal), n (%) 18 (67) 19 (68) 12 (80) 13 (76)

Meconium stained amniotic fluid, n (%) 1 (4) 1 (4) 1 (7) 1 (6)

Neonatal Outcomes
Sex, n (%) 13 (48) 13 (46) 8 (53) 8 (47)

Birthweight (g), mean (SD) 2536.6 (367.5) 2385.2 (476.7) 2344.7 (289.7) 2415.9 (378.8)

Birthweight Z-score, mean (SD) -1.03 (0.70) -1.09 (0.55) -1.23 (0.78) -1.10 (0.57)

APGAR score at 1 minute, median (IQR) 8 (8, 9) 8 (8, 8) 8 (7, 8) 8 (8, 8)

APGAR score at 5 minutes, median (IQR) 9 (9, 9) 9 (8.5, 9) 9 (9, 9) 9 (9, 9)

Cord arterial pH, mean (SD) 7.29 (0.05) 7.27 (0.05) 7.30 (0.05) 7.26 (0.05)

Cord arterial base excess, mean (SD) -2.55 (1.69) -2.97 (1.25) -2.54 (1.40) -3.00 (1.34)

Respiratory distress syndrome, n (%) 5 (19) 6 (21) 3 (20) 1 (6)

BMI–body mass index; IQR–interquartile range; POM–pomegranate; PMA–postmenstrual age; SD–standard deviation

https://doi.org/10.1371/journal.pone.0219596.t001
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more sensitive to these alterations than correlation measures [45]. Of note, the most apparent

alterations were observed in the visual cortex, an early maturing, developmentally vulnerable

cortical region [83, 84]. Interestingly, these findings survived supplemental analyses correcting

for multiple comparisons using the false discovery rate [85]. The retina has been increasingly

shown to be susceptible to the effects of hypoxic-ischemia [86, 87], with mechanisms involving

glutamate excitotoxicity and oxidative glutamate toxicity implicated [88, 89]. Furthermore,

studies have demonstrated the therapeutic potential of polyphenols in reducing oxidative

stress-induced death of retinal ganglion and pigment epithelial cells [90–93].

Fig 2. Relationships between maternal pomegranate juice intake and infant DTI measures. (Top) Treatment vs. placebo (modified intention-to-treat analysis).

(Bottom) Metabolite-positive treatment vs. metabolite-negative placebo (per-protocol analysis). The point estimates represent the difference between groups in white

matter DTI measures based on analyses run using generalized linear models (GLM) adjusted for postmenstrual age at scan. The error bars represent the 95% confidence

intervals. ALIC–anterior limb of internal capsule; CC–corpus callosum; CNBD–cingulum bundle; CSOV–centrum semiovale; FA–fractional anisotropy; Frontal–frontal

lobe; OR–optic radiation; MD–mean diffusivity; PLIC–posterior limb of internal capsule; RD–radial diffusivity. Left/Right indicate measures for bilateral white matter

tracts.

https://doi.org/10.1371/journal.pone.0219596.g002
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Of note, there was little evidence for microstructural changes within corresponding white mat-

ter tracts such as the optic radiations. While some studies demonstrate robust relationships

between DTI and fcMRI findings [94, 95], others have not [96–98],, suggesting that structural

and functional connectivity may not interrelate via a one-to-one relationship. Future studies com-

bining these modalities are likely to improve our understanding of structure-function interactions

in the developing brain. It is worth noting that the observed microstructural and functional con-

nectivity alterations may be related to later neurodevelopmental outcomes; investigations are cur-

rently underway to better understand these relationships. Further, though the current study

employed term-equivalent MRI, investigations including fetal MRI may provide additional

insight into brain development trajectories following in utero POM exposure.

Fig 3. Relationships between maternal pomegranate juice intake and infant fcMRI measures (correlations). Group mean Fisher’s z-transformed correlation

coefficient matrices are shown representing all ROI pairs. The block structure along the diagonal seen in both groups corresponds to resting state networks. Warm hues

within diagonal blocks reflect positively correlated ROIs within RSN, while cool hues reflect negatively correlated ROIs within RSNs. (Top, A-C) Treatment vs. placebo

(modified intention-to-treat analysis). (A) Infants in treatment (pomegranate juice) group and (B) infants in placebo group at term-equivalent. (C) Shows the difference

between groups (treatment minus placebo). (Bottom, D-F) Metabolite-positive treatment vs. metabolite-negative placebo (per-protocol analysis). (D) Infants in

metabolite-positive treatment group and (E) infants in metabolite-negative placebo group at term-equivalent. (F) Shows the difference between groups (metabolite-

positive treatment minus metabolite-negative placebo). Note metabolite-positive treatment> metabolite-negative placebo correlation in subcortical and visual network.

CER—cerebellar; CO—cingulo-opercular; DAN–dorsal attention network; DMN–default mode network; FP–frontal parietal network; LAN–language area network;

Metab–metabolite; Neg–negative; POM–pomegranate; Pos–positive; SAL–salience network; SMN–sensorimotor network; SUB–subcortical grey matter; VAN–ventral

attention network; VIS–visual network.

https://doi.org/10.1371/journal.pone.0219596.g003
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The current study supports the therapeutic potential of polyphenols such as POM for hyp-

oxic-ischemic injury, however, our findings need to be considered with respect to several limi-

tations. In the current study consumption of 8 oz. POM provided a daily administration of no

less than 700 mg GAE of polyphenols [20]. Ellagitannins are metabolized by colonic gut micro-

biota to generate more readily absorbed metabolites, specifically UA and DMEAG [99–101],

proposed to be the bioactive molecules underlying the neuroprotectant effects of POM [99–

102]. However, there are challenges associated with the chemical estimation methods

employed to assess metabolite bioavailability [60], further compounded by intra-subject vari-

ability in polyphenol metabolism arising from genetic polymorphisms in metabolizing

Fig 4. Relationships between maternal pomegranate juice intake and infant fcMRI measures (covariance). Group mean covariance matrices are shown representing

all ROI pairs. The block structure along the diagonal seen in both groups corresponds to resting state networks. Warm hues within diagonal blocks reflect positively

correlated ROIs within RSN, while cool hues reflect negatively correlated ROIs within RSNs. (Top, A-C) Treatment vs. placebo (modified intention-to-treat analysis).

(A) Infants in treatment (pomegranate juice) group and (B) infants in placebo group at term-equivalent. (C) Shows the difference between groups (treatment minus

placebo). Note treatment> placebo covariance within subcortical and visual networks. (Bottom, D-F) Metabolite-positive treatment vs. metabolite-negative placebo

(per-protocol analysis). (D) Infants in metabolite-positive treatment group and (E) infants in metabolite-negative placebo group at term-equivalent. (F) Shows the

difference between groups (metabolite-positive treatment minus metabolite-negative placebo). Note metabolite-positive treatment> metabolite-negative placebo

covariance within subcortical and visual networks. CER—cerebellar; CO—cingulo-opercular; DAN–dorsal attention network; DMN–default mode network; FP–frontal

parietal network; LAN–language area network; Metab–metabolite; Neg–negative; POM–pomegranate; Pos–positive; SAL–salience network; SMN–sensorimotor

network; SUB–subcortical grey matter; VAN–ventral attention network; VIS–visual network.

https://doi.org/10.1371/journal.pone.0219596.g004
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enzymes [100] as well as variations in gut microbiota [103]. There is also limited information

on, and variability in, polyphenol content in various food items [60, 104, 105]. While we did

not capture information on participant diet, it is reasonable to assume that residual polyphe-

nol-intake from non-pomegranate dietary sources was randomly distributed among study

participants given UA and DMEAG were largely absent in both groups at enrolment.

Nonetheless, in PP analyses using metabolite positivity as a proxy for polyphenol intake, con-

founding arising from these factors cannot be excluded. Finally, we did not undertake echocar-

diography for evaluation of the PDA but there was no clinical evidence seen of premature

closure or constriction of the PDA. Direct effects on health were not found.

5. Conclusion

We provide preliminary evidence supporting potential in utero effects of POM exposure. Spe-

cifically, we report differences suggestive of enhanced microstructural organization within the

Table 2. Composite mean Fisher z-transformed correlations and mean covariance by group status, adjusted for postmenstrual age at scan.

Group Summaries Group Comparisons1

POM

(n = 17)

POM,

Metabolite +ve

(n = 10)

Placebo

(n = 20)

Placebo,

Metabolite

-ve

(n = 14)

MODIFIED

INTENTION-TO-TREAT

PER-PROTOCOL

Network correlation Mean SD Mean SD Mean SD Mean SD Estimate SE t P Estimate SE t P

SMN 0.26 0.06 0.26 0.07 0.28 0.05 0.28 0.06 -0.02 0.02 -1.04 0.30 -0.02 0.03 -0.57 0.57

SUB2 0.41 0.42 0.34 0.33 0.09 0.04 2.23 0.03 0.11 0.08 1.45 0.15

CER 0.25 0.14 0.22 0.11 0.22 0.10 0.22 0.10 0.04 0.04 0.89 0.38 0.00 0.04 -0.05 0.96

CO2 0.18 0.18 0.17 0.15 -0.005 0.02 -0.21 0.84 0.02 0.03 0.71 0.48

VAN 0.13 0.04 0.14 0.03 0.12 0.05 0.11 0.05 0.01 0.02 0.89 0.38 0.03 0.02 1.47 0.16

DAN 0.12 0.06 0.12 0.07 0.11 0.05 0.12 0.05 0.00 0.02 0.04 0.97 0.00 0.02 0.14 0.89

FP 0.14 0.05 0.15 0.06 0.12 0.04 0.13 0.04 0.01 0.01 0.68 0.50 0.02 0.02 0.86 0.40

SAL 0.17 0.05 0.19 0.04 0.18 0.07 0.16 0.06 -0.01 0.02 -0.57 0.57 0.02 0.02 1.04 0.31

DMN 0.08 0.02 0.08 0.03 0.07 0.02 0.07 0.02 0.00 0.01 0.20 0.84 0.00 0.01 0.34 0.74

VIS 0.22 0.08 0.25 0.07 0.19 0.08 0.16 0.07 0.04 0.03 1.34 0.19 0.09 0.03 2.87 0.01

Network covariance Mean SD Mean SD Mean SD Mean SD Estimate SE t P Estimate SE t P

SMN2 1.30 1.51 1.33 1.28 -0.09 0.15 -0.61 0.55 0.12 0.19 0.61 0.55

SUB2 0.97 1.05 0.84 0.80 0.29 0.24 1.21 0.24 0.72 0.30 2.40 0.03

CER2 0.85 0.86 0.55 0.55 0.15 0.10 1.41 0.17 0.13 0.13 1.01 0.32

CO2 0.70 0.81 0.47 0.43 0.15 0.19 0.78 0.44 0.44 0.23 1.92 0.07

VAN3 0.38 0.50 0.26 0.24 0.10 0.07 1.48 0.15 0.26 0.13 2.01 0.06

DAN2 0.34 0.47 0.30 0.27 0.20 0.24 0.83 0.41 0.46 0.31 1.46 0.16

FP2 0.45 0.50 0.30 0.28 0.14 0.09 1.57 0.13 0.20 0.13 1.48 0.15

SAL2 0.43 0.62 0.35 0.26 0.10 0.24 0.40 0.69 0.68 0.23 2.97 0.01

DMN2 0.20 0.32 0.20 0.17 0.21 0.18 1.18 0.25 0.55 0.21 2.61 0.02

VIS2 0.73 1.09 0.45 0.33 0.41 0.26 1.58 0.12 0.99 0.32 3.10 0.01

CER—cerebellar; CO—cingulo-opercular; DAN–dorsal attention network; DMN–default mode network; FP–frontal parietal network; LAN–language area network;

POM–pomegranate; SAL–salience network; SMN–sensorimotor network; SUB–subcortical grey matter; VAN–ventral attention network; VIS–visual network
1 Analyses run using generalized linear models (GLM) adjusted for postmenstrual age at scan
2 Distribution skewed (> |0.8|). Analyses run using ln transformed variables (for CER_avg_covariance tranformation based on raw value + 1 to account for negative

values). Group summary values reflect medians, not means, of the raw distribution
3 Remained skewed after transformation. Raw variable modeled using quantile (median) regression (SAS PROC QUANTREG); group summary values reflect medians,

not means, of the distribution

https://doi.org/10.1371/journal.pone.0219596.t002
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Table 3. Measures of compliance.

MODIFIED INTENTION-TO-TREAT PER-PROTOCOL

Placebo

(n = 27)

POM

(n = 28)

Absolute

Effect Size1
Relative

Effect

Size2

SE2 t/
χ2

P3 Placebo,

Metabolite

-ve

(n = 15)

POM,

Metabolite

+ve

(n = 17)

Absolute

Effect Size1
Relative

Effect

Size2

SE2 t/
χ2

P3

Days of consumption,

median (IQR)

23

(14, 40)

18.5

(7, 30.5)

6.8 0.44 4.17 1.6 0.11 23

(15, 40)

18

(7, 24)

9.7 0.71 4.89 2.0 0.06

Maternal UA or

DMEAG at

enrollment, n (%)

3 (11) 2 (8)a -3.1% 0.64 0.08 1.00 1 (7) 1 (7) 0.0% 1.00 0.14 1.00

Maternal UA or

DMEAG at delivery, n
(%)

11 (42)b 17 (68)c 25.7% 1.49 0.13 3.4 0.07 0 (0) 17 (100) 100.0% 31.11 0.17 <0.001

Cord UA or DMEAG

at

delivery, n (%)

8 (33)d 14 (61)e 27.5% 1.69 0.13 3.6 0.06 0 (0) 14 (93) 93.3% 25.78 0.17 <0.001

Positive for

metabolites in cord

blood or maternal

blood at delivery

11 (42)f 17 (68)g 25.7% 1.49 0.13 3.4 0.07 0 (0) 17 (100) 100.0% 31.11 0.17 <0.001

DMEAG; dimethylellagic acid glucuronid; IQR–interquartile range; POM–pomegranate; SE–standard error; UA–urolithin A
1 Absolute effect size calculated as the mean difference for continuous variables, and the risk difference (%) for categorical variables (Placebo = reference)
2 Relative effect size calculated as Cohen’s d for continuous variables, and the relative risk for categorical variables (Placebo = reference). For analyses with zero in one or

more cells, 0.5 was added to each cell prior to calculation of the relative risk and its standard error (SE). Corresponding SE are reported.
3 Fisher’s exact test (2-sided) used to compare proportions by group where expected cell size < 5.
a n = 25
b n = 26
c n = 25
d n = 24
e n = 23
f n = 26
g n = 25

https://doi.org/10.1371/journal.pone.0219596.t003

Table 4. Safety assessment.

Complication Placebo

(n = 34)

POM

(n = 37)

Risk Difference1 (%) Relative Risk2 SE2 χ2 P3

NICU admission, n (%) 1 (3) 3 (8) 5.1 2.76 0.05 0.62

Special care nursery admission, n (%) 10 (29) 10 (27) -2.4 0.92 0.11 0.05 0.82

Respiratory distress, n (%) 7 (21) 9 (24) 3.7 1.18 0.10 0.14 0.71

Resuscitation at delivery, n (%) 5 (15) 8 (22) 6.9 1.47 0.09 0.57 0.45

Intraventricular hemorrhage, n (%) 0 (0) 0 (0) 0.0 - - NA NA

Sepsis, n (%) 2 (0) 1 (3) -3.2 0.46 0.05 1.00

Necrotizing enterocolitis, n (%) 0 (0) 0 (0) 0 - - NA NA

NICU–neonatal intensive care; POM–pomegranate; SE–standard error
1 Absolute effect size calculated as the mean difference for continuous variables, and the risk difference (%) for categorical variables (Placebo = reference)
2 Relative effect size calculated as Cohen’s d for continuous variables, and the relative risk for categorical variables (Placebo = reference). For analyses with zero in one or

more cells, 0.5 was added to each cell prior to calculation of the relative risk and its standard error (SE). Corresponding SE are reported.
3 Fisher’s exact test (2-sided) used to compare proportions by group where expected cell size < 5.

https://doi.org/10.1371/journal.pone.0219596.t004
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ALIC and PLIC and functional connectivity within the visual network. This study provides a

foundation for building an evidence base for potential neuroprotective agents that mat be

effective in the general population of at-risk newborns, such as those with hypoxic-ischemic

injury. Importantly, our findings warrant the need for a larger, rigorously designed clinical

trial to allow continued investigation into the potential region-specific neuroprotective effects

of polyphenols.
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