

Portable Photosynthesis Systems High-Level Field Research & Basic Research Solutions

Redefining the Boundaries of Life Science Research

CIRAS-3 Redefining "portability." Meeting the demands of

CIRAS-3 Main Console

Weight: 4.5 kg (including batteries) Dimensions: 28 cm (W) x 14.5 cm (D) x 24 cm (H)

the serious researcher driving the future of science.

Accurate. Always Reliable.

Customize Your PLC3 Universal Leaf Cuvette in the Field

Three interchangeable head plates come standard, making it the go-to cuvette in most situations.

25 mm x 7 mm

18 mm Diameter

Works with our CFM-3 Chlorophyll Fluorescence Module, too! All accessories are field-changeable as well — virtually plug & play!

Laboratory Results in a Field-Portable System

- + Truly mobile! Lightweight console (4.5 kg) & leaf cuvette (0.75 kg)
- + True differential gas analyzer featuring four independent, non-dispersive infrared gas analyzers for both CO₂ & H₂O
- + Small system volume optimized for the fastest, most accurate measurement of photosynthesis available
- + Rapid measurement of A/C_i with our high-speed CO₂ ramp technology
- + Fully automatic, independent & programmable control of CO₂, H₂O, temperature & light
- + Up to 12 hours of continuous use with two lightweight, energy-efficient Li-ion battery packs
- + Collect a full range of data in a single measurement
- + Simultaneous measurement of photosynthesis & chlorophyll fluorescence
- + Unlimited data storage
- + Intuitive user interface
- + Powerful, highly customizable software
- + Versatility at it's best with lightweight, field-ready plug & play accessories for several applications

PLC3 Universal Leaf Cuvette

Weight: 0.75 kg Dimensions: 32 cm (L) x 3.8 cm (Handle Diameter)

Fully Mobile & Fast Response Eliminating the

Size & Weight Matter

Portability is critical, particularly when field research takes you to remote sites. Having a system that is lightweight with a small footprint results in less site disturbance, greater access to hard-to-reach places and reduced fatigue. At just 4.5 kg for the CIRAS-3 main console (including both Li-ion battery packs) and 0.75 kg for the leaf cuvette, field measurements become an entirely new research experience.

Packed with Power

Advanced system electronics coupled with powerful, efficient Li-ion battery packs allow for continuous system operation up to 12 hours. Our batteries have greater power density allowing for longer battery life, eliminating time-consuming and cumbersome battery changes in the field.

Minimal Maintenance Required

No need to concern yourself with routine service or maintenance of any electrical or mechanical components on the CIRAS-3 console - including the optical bench. Simply maintain easily accessible desiccants and filters and periodically inspect the leaf cuvette head and gaskets for dust, dirt and any debris from vegetation. Simply put, the CIRAS-3 is remarkably low maintenance!

obstacles while elevating the experience.

Additional Field-Friendly Features

+ Plug & Play Leaf Cuvettes & Chambers

All accessories are elegantly designed to connect directly to the CIRAS-3. *No assembly or disassembly required.*

+ Two Leaf Cuvettes in One

The PLC3 Conifer and Narrow Leaf Cuvettes are convertible by design. Need both styles? Simply change out the top head plate to convert from one style to the other. The PLC3 Narrow/Conifer LED Light Unit is designed to fit both leaf cuvette styles – *an additional value*.

+ Automatically Control or Create Air Supply Humidity

Built into the CO₂/H₂O control air supply, the CIRAS-3's unique H₂O Vapor Equilibrator incorporates Nafion[®] gas tubing to ensure accurate, stable and precise control of H₂O above and below ambient levels.

+ CFM-3 Chlorophyll Fluorescence Module

The CFM-3 can be used as both a fluorometer and as an actinic light source. All light sources and fluorescence detection capability is built into one single, compact module.

+ Stand-Alone CO₂/H₂O IRGA

The CIRAS-3 console can be used independently for accurate, precise and reliable measurement of CO_2 and H_2O . Do you have your own custom chambers that you would like to use? No problem! *Simply connect the gas lines to the CIRAS-3 and begin your measurements.*

+ Ideal Flow Rates

The CIRAS-3 can be programmed to control flow rates up to 500 cc min⁻¹ resulting in fast response time, higher differentials and lower signal-to-noise ratio on CO_2 and H_2O , particularly on small vegetation.

"The people working in my lab and I have been extremely satisfied with the CIRAS-3. We have found all of the CIRAS systems (my first was the CIRAS-1) to be easy to use and highly reliable.

In addition, the technical support and service at PP Systems is impeccable."

Bruce Schaffer, Ph.D.
 University of Florida

You're in Control The certainty of automated environ

CO₂ & H₂O Gas Analyzers

The heart & soul of any leaf gas exchange system

The backbone and most critical part of any leaf gas exchange system is the gas analysis system. The CIRAS-3 is a *true differential analyzer* featuring 4 independent, non-dispersive infrared gas analyzers (IRGAs) ensuring the most accurate and reliable measurement and control of CO_2 and H_2O available. For high-level research, this is a critical requirement and a major advantage over gas switching systems. For enhanced reliability, there are no moving parts and the optical bench is temperature controlled and pressure compensated for the most accurate and reliable measurement of CO_2 and H_2O under changing ambient conditions. Each gas analyzer includes an IR source, highly polished gold-plated sample cells, and detectors optimized for CO_2 (4.26 µm) and H_2O (2.60 µm).

Located in the console, the CIRAS-3's optical bench is safely protected and filtered from even the harshest of environmental conditions, virtually eliminating the need for any user maintenance or cleaning. The IRGAs are located close to the internal gas mixing system, providing tight control of gas flow and ultra-fast response to changes in the reference CO₂ and H₂O gas supply.

Our Unique Auto-Zero Technique

No factory recalibration required

Expect nothing less than the most accurate, reliable and stable calibration of CO₂ and H₂O for many years without the need for inconvenient, time-consuming and costly return-to-factory calibration. Our innovative, proprietary **Auto-Zero** measurement technique ensures an inherent calibration stability that has been confirmed by more than 30 years of experience in gas analysis technology. It allows for very fast warm-up, quick adaptation to changing ambient conditions and excellent long-term stability. Auto-Zero also minimizes effects on span gas sensitivity, IR source aging, as well as changes in detector sensitivity and electronics. Simple, periodic system checks are recommended to confirm system integrity and calibration.

CO₂ Measurement & Control

Automatic and programmable CO_2 control is standard with the CIRAS-3. PP Systems pioneered the method of controlling CO_2 back in 1992 (CIRAS-1) using mini CO_2 cartridges that are commercially available and easily sourced worldwide. Our proprietary gas mixing technology and CO_2 regulator provide accurate, stable and constant flow of CO_2 . Each CO_2 cartridge provides at least 12 hours of continuous use in the field and our CO_2 regulator and cartridge holder are maintenance free.

Measurement Range 0 – 10000 μmol mol⁻¹ **Control Range** 0 – 2000 μmol mol⁻¹

The CIRAS-3 can easily be connected to an external CO_2 source if required. It can also be easily programmed and configured for ambient CO_2 measurements.

Environmental control is fast and easy.

mental controls & the versatility of complete programmability.

PP Systems also pioneered the method of controlling H_2O automatically. Programmable H_2O control is standard with the CIRAS-3. Onboard, self-conditioning desiccants are used for controlling H_2O via user-defined settings. The CIRAS-3 can control H_2O based on a percentage of ambient, VPD (Vapor Pressure Deficit), or to a specific H_2O concentration (mb).

Measurement Range	Control Range
0 – 75 mb	0 – Dewpoint

The CIRAS-3 can easily be configured for above and below ambient H₂O measurements.

Temperature Measurement & Control

The CIRAS-3 features the widest range, as well as the fastest and most reliable temperature control in the industry. Each leaf cuvette's integral automatic temperature control is highly accurate and stable. Peltier coolers with heat sink and fan are mounted on all cuvette heads for precise control over a wide range of temperatures. The CIRAS-3 can be programmed to control to a specific leaf temperature, a specific cuvette air temperature or to track leaf to ambient. Temperature control can also be disabled.

Control Limits $0 - 45 \degree C$

Control Range -10 °C below ambient to +15 °C above ambient

Light Measurement & Control

Automatic control of light intensity is achieved with our compact, low-power lightweight LED (RGBW) light units available for each of our PLC3 leaf cuvettes.

Measurement	Range
0 – 3000 µmol	m ⁻² s ⁻¹

Control Range 0 – 2500 μmol m⁻² s⁻¹ (PLC3 Universal) 0 – 2000 μmol m⁻² s⁻¹ (PLC3 Conifer & Narrow)

Each light unit features a bank of red, green, blue and white LEDs. In addition to controlling light intensity, you can also control the proportion of light by wavelength, which can be especially useful for research on plant responses to different light types.

Trusted accuracy & reliability provide the freedom to focus on the important work to be done.

Soda Lime (CO₂ Scrubber)

H₂O Vapor Equilibrator

Drierite (H₂O Scrubber)

Ultra-Fast A/C_i Curves

The game-changing technology & technique that generates the fastest & easiest measurements available.

Our High-Speed CO₂ Ramping Technique

Researchers perform rapid A (Assimilation) vs. C_i (Intercellular CO₂) curves to provide parameters for photosynthetic characteristics of leaves beyond those derived from any single A and C_i measurement including:

- Maximum capacity of the ribulose bis-phosphate carboxylase enzyme (Rubisco-V_{cmax})
- Maximum rate of photosynthetic electron transport (J_{max})
- Maximum rate of triose phosphate utilization (TPU_{cmax})

For years, researchers have optimized survey time without sacrificing accuracy by utilizing our proprietary gas mixing system for performing **Stored Differential Balance** (**SDB**). Our unique SDB self-calibration routine lets you accurately measure and store CO₂ and H₂O concentrations over a series of levels, eliminating steady-state response interruptions to balance or match reference and analysis gas analyzers.

This allows you to experience incredibly fast, non-steady-state measurement of A/C_i in a fraction of the time required for steady-state methods thanks to the CIRAS-3's SDB and our innovative high-speed CO₂ ramping technique — revolutionizing the research experience.

The process is fully automatic and programmable and post-processing of data could not be any easier — more measurements and data points in a much shorter period of time!

Comparison of a non-steady-state A/C_i curve performed in 7 minutes using our high-speed CO₂ ramping technique to a traditional point-by-point steady-state A/C_i curve performed in 35 minutes for a typical C₃ Bean (*Phaseolus vulgaris*) at 25 °C with PAR of 1800 μ mol m⁻² s⁻¹.

Bunce, J. (2018). Three Methods of Estimating Mesophyll Conductance Agree Regarding its CO_2 Sensitivity in the Rubisco-Limited C_i Range. *Plants*, 7(3), 62. doi:10.3390/plants7030062

Photosynthesis & Chlorophyll Fluorescence The compact, lightweight & versatile solution for both measurements.

CFM-3 Chlorophyll Fluorescence Module

If your research includes chlorophyll fluorescence, the CFM-3 Chlorophyll Fluorescence Module is capable of simultaneously measuring chlorophyll fluorescence and photosynthesis.

MultiPulse[™] Technology for Accurate Estimation of Fm'

The CFM-3 is capable of delivering highsaturating pulses up to 10000 µmol m⁻² s⁻¹. The CIRAS-3 is the only system available that features our innovative MultiPulse[™] technology.

MultiPulse[™] produces a sequence of user-defined, lower-saturating pulse light levels, avoiding the risk of photodamage to the leaf while accurately estimating apparent F_m⁴.

Actinic Light Source — Added Versatility & Value The CFM-3 is elegantly designed with all light sources and fluorescence detection capability built directly into one lightweight, compact unit.

It can act as an actinic light source for leaf gas exchange and as a pulse-amplitude-modulated (PAM) fluorometer for measurement of chlorophyll fluorescence on both dark- and light-adapted vegetation.

Multiple Leaf Head Plates

The compact module is lightweight (0.3 kg), truly plug and play, and allows the user to measure chlorophyll fluorescence over the entire leaf area using any of the three leaf head plates that come standard with the PLC3 Universal Leaf Cuvette.

PLC3 Universal Leaf Cuvette Head Plates

25 mm x 7 mm 1.75 cm²

18 mm Diameter 2.5 cm²

Elegant & Lightweight Design — Ideal for Field Use

1. Simply slide the unit onto the upper jaw

2. Plug the power connector into

Chlorophyll Fluorescence Parameters

Measured		Calculated	
F	F _v	ΦΡSΙΙ	qL
F _s	F _v /F _m	J	ΦΝΟ
Fo	F _v ′	qP	ΦNPQ-K
F _m	F _m ′	qNP	ΦfD
F _o ′	F_v'/F_m'	NPQ	ØNPQ-G

Lightweight & Field-Adaptable Revolutionizing

PLC3 Leaf Cuvettes

For flat,

broad leaves

PLC3 Universal Leaf Cuvette

Each cuvette is truly plug & play! No need for time-consuming delicate reassembly & adjustment of different heads or sensors. All leaf cuvette materials are carefully selected to minimize influences such as infrared radiation, water sorption, CO₂ effects & leaks.

PLC3 Universal Leaf Cuvette

By far our most popular leaf cuvette, the **PLC3 Universal Leaf Cuvette** measures most flat, broad leaf plants. It comes standard with three interchangeable window head plates that are easy to swap out, allowing you to accommodate a wide range of different leaf sizes in the field.

Two miniature PAR sensors provide a highly reliable average of PAR inside the cuvette in addition to ambient PAR measured by an external sensor. A technologically advanced Infrared (IR) sensor provides accurate, non-contact measurement of leaf temperature. Leaf temperature can also be determined by energy balance.

PLC3 Universal Leaf Cuvette Field-Changeable Head Plates

- Comes standard
- + Easy to swap out in the field
- + Survey multiple types of vegetation

PLC3 Conifer & Narrow Leaf Cuvettes

An internal PAR sensor provides measurement of PAR inside the cuvette in addition to ambient PAR by an external sensor. Leaf temperature is calculated using energy balance or measured directly using a precision thermistor for contact measurement.

> For grasses, cereal crops & long needle conifers

For grasses, cereal crops & short needle conifers

PLC3 Conifer Leaf Cuvette

Need both? No need to purchase two cuvettes.

Optional head plates provide the simple conversion between "narrow" and "conifer".

PLC3 Narrow Leaf Cuvette

the research experience.

LED Light Units

Automatically control both light intensity & proportion of light by wavelength

Optional light units are available for automatic control of light for all PLC3 leaf cuvettes. Each light unit features a bank of red, green, blue and white LEDs (RGBW), allowing for automatic control of both light intensity and proportion of light by wavelength. All light units are designed to ensure uniform light distribution over the entire leaf area for accurate results.

Effortlessly connect our light units to the corresponding leaf cuvette head for use on cloudy days or for controlled light experiments, or remove for ambient measurements.

Wavelength (RGBW)

Color	Peak	Full Width at Half Max
Red	625 nm ± 5 nm	15 nm
Green	528 nm ± 8 nm	40 nm
Blue	475 nm ±10 nr	n 28 nm
White	425 – 700 nm	
Light Cont	rol Ranges	
Universal	0 – 2500	umol m ⁻² s ⁻¹

Narrow/Conifer 0 – 2000 μmol m⁻² s⁻¹

PLC3 Universal Leaf Cuvette with PLC3 Universal LED Light Unit

PLC3 Conifer & Narrow LED Light Unit

A single light unit for both — an added savings in cost, space & weight in the field

This PLC3 LED Light Unit is uniquely designed as an interchangeable RGBW light source for both the PLC3 Conifer and Narrow Leaf Cuvettes.

Powerful, Customizable & Intuitive Software

Outstanding Readability Under All Lighting Conditions, Particularly High Sunlight

The CIRAS-3 features a large, full-color 7.0" transflective display offering unsurpassed readability even under high sunlight conditions. The brighter the sun, the higher the contrast! The console is ergonomically designed to offer a 30° viewing angle to comfortably view the display from just about any position in the field. A 27-key tactile keypad is available for all user inputs and system navigation.

Your First Measurements in Minutes

Begin collecting data shortly after your system arrives. Built-in system help and user tutorials are designed to guide even the most inexperienced user every step of the way.

Details with Your Data

R

R

India 2 CO2d LDiff

Easily include that detailed, alphanumeric information needed for analysis and post-processing your stored data using the CIRAS-3's virtual keyboard.

Data Presentation

Customize the information that you would like to be presented on the LCD under your system preferences. Many displays, as well as presentation of data, are user-definable including numeric display of information, numeric and graphical presentation of data or customized data for your specific parameters.

"The CIRAS-3 is accurate, reliable, easy to use and extremely robust in greenhouse as well as field conditions. We look forward to continuing to work together to discover new innovations in agriculture."

> — Dr. Jeremy Pattison Driscoll's Research & Development

with a user interface that's quick to learn & easy to use.

PC Utility

Response Scripts Editor

Programming experiments from a PC is effortless with PP Systems' **PC Utility**. Easily create, edit and modify your own response curve scripts. Once created, simply upload to the CIRAS-3 console for execution or share with colleagues that may want to replicate your experiment.

	Application G	as Exchang	ge - CO2 Ramp					1			
	Script File A	Ci C3 RAM	IP					•]			
Numbe	er of Levels 2	26		Ac	climation 120	i I	(s)	Ramp	6	(min)	
Rec	ords/Level 1			Record	Interval 1.6	(s)		Slope	233.33		(ppm/min)
Envir	onmental Con	trols									
Appro	ximate Reference	e Air			Fixe	d % of Re	eference				
CO2 5	Start 100	CO	2 End 1500		H2C	50					
(umol	mol-1)	(umo	l mol-1)		(%)						
Temp	erature 25			L	ight Intensity	1500	1				
(°C)	20			(umol m-2 s-1)	1000					
RGBW	Red 20	Green	27 Blue 2	DE .	White o	11					
RODI	100 30	oreen	S/ Dide 2	10	Willie U						
(%)											
(%) Temp	erature Contr	ol Type pe	r CIRAS-3.			т	otal Time	to Con	nplete S	cript:	0h 8m 0
(%) Temp	erature Contr	ol Type pe	r CIRAS-3.	C02	H20	Temp	otal Time	to Con	nplete S	cript:	0h 8m 0
(%) Temp Level	Acclimation	ol Type pe Records	r CIRAS-3. Record Interval	CO2	H2O	T Temp	otal Time	to Con	nplete S RGBW	cript:	0h 8m 0
(%) Temp Level 1 2	Acclimation	ol Type pe Records	r CIRAS-3. Record Interval	CO2 100	H2O 50 50	T Temp 25 25	otal Time PAR 1500 1500	to Con	nplete S RGBW 38-37-2 38-37-2	cript: 5-0	0h 8m 0
(%) Temp Level 1 2 3	Acclimation 120 1	Records	r CIRAS-3. Record Interval	CO2 100 106 112	H2O 50 50 50	Temp 25 25 25	PAR 1500 1500 1500	to Con	nplete S RGBW 38-37-2 38-37-2 38-37-2	5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4	Acclimation 120 1 1	ol Type pe Records 1 1 1 1	r CIRAS-3. Record Interval	CO2 100 106 112 119	H2O 50 50 50 50 50	T Temp 25 25 25 25 25 25	Total Time PAR 1500 1500 1500 1500	to Con	nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5	Acclimation 120 1 1 1 1 1	ol Type pe Records 1 1 1 1 1	r CIRAS-3. Record Interval 1 1 1 1 1	CO2 100 106 112 119 125	H2O 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25	Total Time PAR 1500 1500 1500 1500 1500	to Con	nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6	Acclimation 120 1 1 1 1 1 1	ol Type pe Records 1 1 1 1 1 1 1	r CIRAS-3. Record Interval 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131	H2O 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25	rotal Time PAR 1500 1500 1500 1500 1500 1500	to Con	nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6 7	Acclimation 120 1 1 1 1 1 1 1 1 1	ol Type pe Records 1 1 1 1 1 1 1 1 1 1 1 1 1	r CIRAS-3. Record Interval 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131 137	H2O 50 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25 25	PAR 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500		nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6 7 8	Acclimation 120 1 1 1 1 1 1 1 1 1 1 1 1	ol Type pe Records 1 1 1 1 1 1 1 1 1 1 1 1 1	r CIRAS-3. Record Interval 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131 137 144	H2O 50 50 50 50 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25 25 25	PAR 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500		nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6 7 7 8 9	Acclimation 120 1 1 1 1 1 1 1 1 1 1 1 1 1	ol Type pe Records 1 1 1 1 1 1 1 1 1 1 1 1 1	r CIRAS-3. Record Interval 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131 137 144 150	H2O 50 50 50 50 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25 25 25 25 25	PAR 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500		nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6 7 7 8 8 9 9 10	Acclimation 120 1 1 1 1 1 1 1 1 1 1 1 1 1	ol Type pe Records 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r CIRAS-3. Record interval 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131 137 144 150 156	H2O 50 50 50 50 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25 25 25 25 25	rotal Time PAR 1500 1500 1500 1500 1500 1500 1500 150		nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6 7 8 9 9 10 11	Acclimation 120 1 1 1 1 1 1 1 1 1 1 1 1 1	Records 1	r CIRAS-3. Record interval 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131 137 144 150 156 162	H2O 50 50 50 50 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25 25 25 25 25	otal Time PAR 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500		nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0
(%) Temp Level 1 2 3 4 5 6 6 7 8 8 9 10 11 12	Acclimation 120 1 1 1 1 1 1 1 1 1 1 1 1 1	Records 1	r CIRAS-3. Record interval 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2 100 106 112 119 125 131 137 144 150 156 162 168	H2O 50 50 50 50 50 50 50 50 50 50 50 50 50	Temp 25 25 25 25 25 25 25 25 25 25 25 25 25	PAR 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500	to Con	nplete S RGBW 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2 38-37-2	5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0	0h 8m 0

Data Collection & Transfer

Measurements can be performed manually or automatically based on user-defined time intervals or programmable response curves.

Response scripts can be programmed directly on the CIRAS-3 console or by using our PC Utility.

Data storage is flexible & virtually unlimited. Data can be stored to internal memory or directly to a USB flash drive and is easily

transferred to your PC for further analysis in your spreadsheet program of choice.

Remote Operation & Display

Presenting information or utilizing the CIRAS-3 as a teaching tool? Operating the CIRAS-3 remotely on a PC is a popular feature for those particular applications, and more.

Parameters

Measured			
CO ₂ Reference	Cuvette Temperature		
CO ₂ Analysis	Leaf Temperature		
CO ₂ Differential	PAR Internal		
H ₂ O Reference	PAR External		
H ₂ O Analysis	Relative Humidity		
H ₂ O Differential	Flow And Leaf Area		
Air Temperature			

Calculated

Assimilation (A)
Intercellular CO ₂ (C _i)
Stomatal Conductance (gs)
Evaporation/Transpiration (E)
Vapor Pressure Deficit (VPD)
Water Use Efficiency (WUE)

Valuable Versatility

A single instrument capable of multiple applications.

Expand your measurement capabilities with field-ready plug & play accessories. All CIRAS-3 accessories are lightweight & designed to connect directly to the console, further enhancing the process of discovery.

Soil CO₂ Efflux

The popular SRC-2 Soil Respiration Chamber is the industry standard for rapid, accurate survey measurement of soil CO₂ efflux. The lightweight chamber is constructed of rugged PVC with a convenient handle for placement on the soil surface. A stainless steel ring provides a good seal on the soil surface or on collars.* A built-in temperature sensor measures air temperature near the soil surface.

Dimensions	150 mm (H)
Volume	1171 ml
Area	78 cm ²
Cable Length	1.5 meters
Weight	0.9 kg

x 100 mm (D) Temperature Sensor (Precision Thermistor) Range -5 to 50 °C Accuracy ± 0.5 °C at 25°C

* Optional collars are available for the CPY-5 Canopy Assimilation Chamber & the SRC-2 Soil Respiration Chamber from PP Systems.

Net Canopy CO₂ Flux

The **CPY-5 Canopy Assimilation Chamber** is ideal for measurement of net canopy CO_2 flux on low-lying vegetation and fruit. Constructed of rugged polycarbonate, the interior of the transparent chamber includes a user-adjustable PAR (Photosynthetically Active Radiation) sensor and an air temperature sensor near the soil surface. An aluminum ring provides a good seal on the soil surface or on collars.^{*}

Dimensions	145 mm (H) x 146 mm (D)	Temperature Sensor (Precision Thermisto	
Area	167 cm ²	Range	-5 to 50 ℃
Cable Length	1.5 meters	Accuracy	± 0.5 °C at 25°C
Weight	1.05 kg	PAR Sensor	Fully cosine corrected
		Range	0-3000 µmol m ⁻² s ⁻¹
		Accuracy	± 5 μmol m ⁻² s ⁻¹
		Precision	1 umol m ⁻² s ⁻¹

Insect Respiration

Our Insect Respiration Chamber can be used to measure CO₂ respiration from small insects.

Chamber Dimensions	15.1 cm (L) x 25 cm (D)
Chamber Volume	33 cm ³ (not including gas tubing)
Chamber Weight	65 g

Custom Chambers? No Problem.

The CIRAS-3 console can be used as a stand-alone CO_2 and H_2O differential gas analyzer. Custom chambers are easily integrated in the laboratory or field.

Technical Specifications

CIRAS-3 Portable CO₂/H₂O Gas Analysis System

Analysis Method

Non-dispersive infrared, configured as an absolute absorptiometer with microprocessor control of linearization. Four independent gas analyzers simultaneously measure absolute CO_2 and H_2O for both the reference and analysis gas streams. All measurements corrected for temperature and pressure.

CO ₂ Measurement Range	0 – 10000 μmol mol ⁻¹ (Optimized for 0-2000 μmol mol ⁻¹)	Digital Output	 USB-Mini b (Host) 2 x USB for use with external devices (USB Flash Drive USB
CO ₂ Precision	0.1 μmol mol ⁻¹ at 400 μmol mol ⁻¹		Mouse, etc.).
CO ₂ Control Range	0 – 2000 µmol mol ⁻¹	Data Storage	512 MB flash memory for
H ₂ O Measurement Range	0 – 75 mb		programming and data storage. Unlimited data storage using USB Flash Drive (Thumb Drive).
H ₂ O Precision	0.01 mb at 10 mb	Microprocessor	800 MHz
H ₂ O Control Range	0-Dewpoint or 0-100% Ambient	Display	7.0" WSVGA transflective, color LCD
Pressure Range	55 – 115 kPa	User Input	 27 tactile keys Virtual alphanumeric keypad
Air Sampling	User-adjustable from 50 – 100 cc min ⁻¹ using integral DC pumps. Both analysis and reference pumps fitted with mass	Power Supply	Two internal, rechargeable 7.2 V Li-ion battery packs providing up to 12 hours continuous use.
	flow controllers.	Operating	0 – 50 °C, non-condensing.
Cuvette Air Supply Unit (Integral)	0 – 500 cc min ⁻¹ measured and controlled by a mass flow meter.	Temperature Range	External air filtration may be required in dusty environments.
Auxiliary Port	For connection to the SRC-2 Soil	Enclosure	Rugged, ergonomic, lightweight aluminum with polyurethane base
	Canopy Assimilation Chamber.	Dimensions	28 cm (W) x 14.5 cm (D) x 24 cm (H)
	••	Weight	4.3 kg (including 1 battery pack) 4.5 kg (including 2 battery packs)

PLC3 Leaf Cuvettes

Construction LCD Display	 Handle: Aluminum Leaf Gasket: Closed cell foam Impeller: Aluminum fan blade 2 x 16 character parameter display 	PAR Sensor (External)	Fully cosine corrected • Response: $400 - 700 \text{ nm}$ • Range: $0 - 3000 \ \mu\text{mol m}^2 \text{ s}^1$ • Accuracy: $\pm 5 \ \mu\text{mol m}^2 \text{ s}^{-1}$
Keypad	2 tactile keys for recording and LCD selection	Air Temperature Sensor	 Precision Thermistor Range: -5 °C to 50 °C
Dimensions (Handle)	32 cm (L) x 3.8 cm (Diameter)		• Accuracy: ± 0.5 °C at 25 °C
Leaf Temperature Sensor Accuracy	± 0.5 °C at 25 °C	Temperature Control	 -10 °C below ambient to +15 °C above ambient Control limits: 0 – 45 °C
	Universal	Narrow	Conifer
Window	Glass Calflex™ IR Filter • 7 mm x 25 mm (1.75 cm ²) • 18 mm diameter (2.5 cm ²) • 18 x 25 mm (4.5 cm ²)	Glass Calflex™ IR Filt • 83 mm x 30 mm	er Scratch resistant glass • 83 mm x 40 mm
PAR Sensor (Internal)	2 miniature PAR sensors	1 PAR sensor	1 PAR sensor
Leaf Temperature Sensor Type	IR sensor for non-contact measurement	Precision thermistor	Precision thermistor
Weight	0.75 kg	1.0 kg	1.0 kg

PLC3 LED Light Units (RGBW)

LED Specification	Wavelength (RGBW)		
	Color	Peak	Full Width at Half Maximum
	Red	625 nm (± 5 nm)	15 nm
	Green	528 nm (± 8 nm)	40 nm
	Blue	475 nm (± 10 nm)	28 nm
	White	425 – 700 nm	
	Universal		Narrow & Conifer
Automatic Control	0 – 2500 µmo	l m ⁻² s ⁻¹	0 – 2000 µmol m ⁻² s ⁻¹
Range			
Dimensions	6.4 cm (L) x 6	cm (W) x 5.1 (H)	6.5 cm (L) x 10.6 cm (W) x 6 (H)
Weight	0.2 kg		0.3 kg

SRC-2 Soil Respiration Chamber

Dimensions	150 mm (H) x	100 mm (Diameter)
Volume	1171 ml	
Area	78 cm ²	
Cable Length	1.5 meters	
Weight	0.9 kg	
Temperature Sensor	 r Precision Thermistor Range: -5 to 50 °C 	
	 Accuracy: 	± 0.5 °C at 25 °C

CPY-5 Canopy Assimilation Chamber

Dimensions	145 mm (H) x	146 mm (Diameter)
Area	167 cm ²	
Cable Length	1.5 meters	
Weight	1.1 kg	
Temperature Sensor	Precision The • Range: • Accuracy:	mistor -5 to 50 ℃ ± 0.5 ℃ at 25 ℃
PAR Sensor	Fully cosine coRange:Accuracy:Precision:	orrected 0 – 3000 μmol m ⁻² s ⁻¹ ± 5 μmol m ⁻² s ⁻¹ 1 μmol m ⁻² s ⁻¹

Insect Respiration Chamber

Chamber Dimensions	15.1 cm (L) x 25 mm (Diameter)
Chamber Volume	33 cm ³ (Not including gas tubing)
Chamber Weight	65 g

CFM-3 Chlorophyll Fluorescence Module

625 nm ± 5 nm (Red)
0 – 10000 µmol m ⁻² s ⁻¹
2 x 750 nm LEDs
PIN Photodiode with >700 nm filter
Rapid pulse peak tracking
1.75 cm^2 , 2.5 cm ² and 4.5 cm ²
8 cm (L) x 6 cm (W) x 6.2 cm (H)
0.3 kg

Pioneering the Field Research Experience — The exception is now the rule

Innovation has always been synonymous with CIRAS Portable Photosynthesis Systems. Our introduction of automatic and programmable CO_2 and H_2O control and the use of 8g CO_2 cartridges — standard features on all CIRAS systems dating back to 1992 — have since become the industry standard and we wouldn't have it any other way.

Our constant innovation is centered around designing scientific instruments that eliminate obstacles and elevate the research experience.

With the CIRAS-3, you collect highly accurate data at a rapid pace with the most advanced and mobile instrument of its kind. That makes for an exciting research experience that ignites the desire to explore further and we're with you every step of the way.

www.ppsystems.com

Portable • Accurate • Reliable

TARGAS-1 | Main Console

CO₂ & H₂O Gas Analysis

The **TARGAS-1** console is compact, lightweight (2.1 kg) and is packaged in a rugged, aluminum enclosure with a shock absorbing polyurethane base making it extremely robust and reliable under harsh environmental conditions. It incorporates two non-dispersive infrared gas analyzers for CO₂ and H₂O ensuring accurate measurement and control of both CO₂ and H₂O. An internal air supply unit provides accurately controlled reference air to the leaf cuvette and another pump draws the sample (analysis) air to the gas analyzer. Both pumps are user controlled and accuracy is ensured by two internal electronic flow sensors.

The **TARGAS-1** is perfectly suited for applications that demand portability and a high degree of accuracy and control with minimal maintenance. The design of the instrument ensures an inherent calibration stability that has been confirmed by many years of experience in gas analysis technology.

The **TARGAS-1** gas analyzers should not require frequent recalibration, although we do recommend periodic checks to confirm system integrity. Both the CO₂ and H₂O gas analyzers employ a non-dispersive, infrared measurement technique, coupled with microprocessor-based signal processing, to achieve excellent stability and specificity to CO₂ and H₂O. Our innovative "Auto-Zero" technology ensures fast warm-up, long term stability, accuracy and analyzer calibration. It also minimizes the effects on span gas sensitivity,

sample cell contamination, IR source aging, changes in detector sensitivity and electronics.

All electrical and gas connections, USB interface, power and desiccants are conveniently located on the console rear panel.

Powerful Battery Technology

The **TARGAS-1** is supplied with a very efficient, powerful and rechargeable Li-ion battery capable of providing operation in the field for up to 10 hours. The instrument can also be used with an AC power supply (included) for continuous operation from the mains in the laboratory.

Data Storage

Data storage is virtually unlimited. Data is stored on a USB flash drive (memory stick) for safe storage and easy transfer of data to your PC.

Touch Display

An innovative, large, touch display (EPD) features simple and intuitive system navigation and it offers excellent viewing under high sunlight.

♡ 86%	Record	89% Z
Ci 345	A 3.9	Tcuv 25.1
gs 42	0.62	(Tleaf) 25.1
VPD 16	WUE	(Area) 4.50
<-		->

Measured Data

Calculated Data

Graphic Data

PLC Leaf Cuvette

The **PLC Leaf Cuvette** is extremely versatile and light weight (0.7 kg) making it ideal for measurement on a wide variety of vegetation including broad leaves, narrow leaves, grasses and small needle conifers. It includes sensors for measurement of air temperature and PAR. All leaf cuvette materials are carefully selected to minimize influences such as infrared radiation, water sorption, CO₂ effects and leaks. The leaf gaskets provide an air-tight seal without causing damage to vegetation.

Light Unit (Optional)

An optional, low power LED based light unit is available for light control if required. It is a useful option for light response curves and for use on cloudy days. The unit clips onto the head of the PLC5 Leaf Cuvette and it can easily be removed for measurement under ambient conditions.

- Type: LED (white)
- Measurement Range: 0 2500 μmol m⁻² s⁻¹

Soil Respiration

Our SRC-2 Soil Respiration Chamber can be used with the TARGAS-1 for easy, accurate and rapid measurement of soil CO₂ efflux. The chamber is constructed out of rugged PVC with stainless steel ring (for sealing) and it includes an internal fan for flushing and mixing the air and an air temperature sensor.

Dimensions: 150 mm (Height) x 100 mm (Diameter)

Collars (optional) are also available for use with the SRC-2 chamber.

Canopy Assimilation

Our **CPY-5 Canopy Assimilation Chamber** can be used with the **TARGAS-1** for easy, accurate and rapid measurement of net canopy CO₂ flux on low lying vegetation. The chamber is transparent and it includes a fan for flushing and mixing the air and sensors for measurement of air temperature and PAR.

- Dimensions: 145 mm (Height) x 146 mm (Exposed Diameter)
- Exposed Area: 167 cm²

Collars (optional) are also available for use with the CPY-5 chamber.

Environmental Sensors

STP-2 Soil Temperature Probe

A rugged, stainless steel probe for accurate measurement of soil temperature. It is commonly used with our SRC-2 Soil Respiration Chamber and CPY-5 Canopy Assimilation Chamber.

Soil Temperature Range • 0 - 50°C

Full-Spectrum Ouantum Sensor

A full-spectrum sensor for accurate measurement of PAR (Photosynthetically Active Radiation) in the lab or in the field under all light sources.

PAR Range

0 – 3000 μmol m⁻² s⁻¹

TRP-3 Temperature/PAR Probe

A single probe for accurate measurement of air temperature and PAR.

Temperature Range

• 0 – 50°C

- PAR Range
- 0 3000 μmol m⁻² s⁻¹

Technical Specifications

Main Console

Analysis Method	Two non-dispersive infrared gas analyzers, configured as an absolute absorptiometer with microprocessor control of linearization for both CO_2 and H_2O . All readings are automatically corrected for temperature, pressure and foreign gas broadening.
CO ₂ Range	0 – 10000 μmol mol- ¹
	Precision: 1 μmol mol- ¹
H2O Range	0 – 75 mb
Pressure Compensation Range	80 – 115 kPa
Absolute Accuracy	< 1% of span concentration over the calibrated range but limited by the accuracy of the calibration mixture
Differential Accuracy	+/- 1 umol mol-1 for CO $_2$ differential up to 50 μmol mol- 1
Linearity	< 1% throughout the range
Stability	Auto-Zero at regular intervals corrects for sample cell contamination, source and detector aging and changes in electronics.
Calibration	User programmable calibration (if required)
Warm-up Time	Approximately 15 minutes
Air Supply Unit	Integral pump for supply of reference air to the leaf cuvette
	Range: 200 - 500 cc/min
	CO ₂ and H ₂ O Control: User adjustable from 0 - 100% of ambient. A smoothing volume is recommended for frech air intake
	An internal electronic flow sensor monitors flow rate
Sampling Pump	Integral nump for sample (Analysis) air
Sampling Lamp	Range: 50-200 cc/min
	An internal electronic flow sensor monitors flow rate.
Sampling Rate	10 Hz. Sample data is averaged and output every 1.0 seconds.
Digital Output	USB
Gas Flow Rate	200-500 cc/min (280-340 cc/min is optimal). An internal electronic flow sensor monitors flow rate.
Terminal Block	10 pin terminal block for system inputs and outputs
Analog Output	0 – 2.5V (CO ₂ range selectable)
Digital Output	One mini USB for connection to external PC
Environmental Sensor Inputs	2 inputs available for use with external chambers and environmental sensors
Alarm	Visual and audible alarm/warnings
Data Storage (USB)	USB Flash Drive port for data storage in multiple formats
Mini USB	For connection to external PC
Touch Display	2.7" electronic paper touch display with 264 x 176 pixel resolution
Power	Internal, rechargeable 7.4V, 8.7 Ah Li-Ion battery provides up to 10 hours of continuous use
Power Consumption	Warm up: 15W (12V @ 1.0A) Normal operation: 7.2W (12V @ 0.6A)
Enclosure	Rugged, ergonomic, lightweight aluminum with polyurethane base
Gas Connections	Two quick connect fittings (inlet and exhaust) for use with 1/8" (.125") ID tubing
Operating Temperature	0 – 50°C, non-condensing
	External filtration is recommended in dirty/dusty environments.
Dimensions	20 cm L x 20 cm H 10 cm W (Enclosure only)
Weight	2.1 kg

PLC5 Leaf Cuvette

Cuvette Materials	The materials of construction are carefully selected to ensure maximum accuracy and repeatability of gas exchange measurements.
Stirring Fan	High speed fan provides efficient mixing of the air inside the leaf chamber for ensuring rapid measurement and minimal boundary layer resistance.
Cuvette Window	18 mm x 25 mm (4.5 cm ²)
Air Temperature Sensor	Precision Thermistor Range: 0-50 °C Accuracy: ± 0.3 °C at 25 °C
PAR Sensor (External)	Cosine corrected Response: 400 - 700 nm Range: 0 - 3000 µmol m ⁻² s ⁻¹ Accuracy: 10 µmol m ⁻² s ⁻¹
Dimensions	30 cm L x 3 cm (Handle Diameter)
Weight	0.7 kg

Light Unit (Optional)

Туре	Low power LED light unit (White LEDs) easily mounts to the PLC5 Broad Leaf Cuvette.
Control Range	0 - 2500 μmol m ⁻² s ⁻¹
Dimensions	6 cm (L) x 6 cm (H) x 5 cm (W)
Weight	0.1 kg

- PP Systems is a registered trademark of PP Systems, Inc.
- PP Systems is continuously updating its products and reserves the right to amend product specifications without notice
- All brand names are trademarks or registered trademarks of their respective owners.

Training & Technical Support With you in the field & for the life of your system.

We want you to have the best possible experience & fully utilize your instrument's capabilities from day one.

Hands-On Training

Our goal with any of our instruments is that you not only understand basic operating procedures, but that you use the instrument to its fullest capacity.

We will get you up to speed quickly as well as provide valuable tips and tricks to further enhance your user experience.

Our instructor-to-student ratio is intentionally kept low to guarantee personalized attention. True hands-on training ensures the maximum benefit of attending the course.

Technical Support

Prompt service and support is paramount and we are highly responsive to all requests.

Direct technical support is available from our U.S. headquarters as well as through our extensive network of certified factory-trained distributors.

"The training provided by PP Systems was exceptional. The training covered aspects ranging from basic setup to advanced techniques of chlorophyll fluorescence. The step-by-step instruction made disseminating the knowledge gained with my other lab members quite easy."

> — Lauren Pile Clemson University

"Whenever we had issues or concerns, the team at PP Systems has been very responsive and helpful troubleshooting and providing solutions."

> - Dr. Alan N. Lakso **Cornell University**

Trusted & Tested Technology

Since 1984

PP Systems has proudly designed and manufactured instrumentation to meet the technology needs of plant and soil scientists since 1984.

Our extensive experience working closely with scientists to provide the best possible research tools, along with our drive to constantly enhance the research and educational experience has afforded us the honor of being one of the most highly referenced global standards in more than 100 countries worldwide.

For further information, please contact us at:

110 Haverhill Road, Suite 301 Amesbury, MA 01913 U.S.A. +1 978-834-0505 TEL FAX +1 978-834-0545 EMAIL sales@ppsystems.com

f ppsystems.intl 🅎 @pp_systems ppsystemsinc

in company/pp-systems

© 2021 PP Systems. All rights reserved.