

CLINICAL TRIALS

A Great Start to Life!

L. reuteri Protectis[®]– A Proven & Safe Probiotic for Mom & Baby^{*}

INTRODUCTION L. reuteri Protectis

INTRODUCTION

The first 1,000 days of life – the period from conception to 2 years of age – represents a critical period for baby's developing microbiota.¹

L. reuteri Protectis is:

L. reuteri Protectis

Promoting

GI Microbiota*

a Healthy

An Intergenerational	Significant	Proven
Probiotic	for Health*	& Safe*
Passed from generation to generation during childbirth and breastfeeding, <i>L. reuteri</i> is an indigenous probiotic whose <i>natural</i> habitat is the human body. ²	L. reuteri has co-evolved with humans since the beginning of time. ^{2,3} Humans have a symbiotic relationship with L. reuteri that is significant for health.* ²	More than 150 clinical trials have shown the safety & health-promoting effects of <i>L. reuteri</i> Protectis.*

Contents

SECTION 1-L. reuteri Protectis Gastrointestinal Health Clinical Trials

Colonizes the Entire GI Tract*4

Promotes a Healthy Microbiota in Colicky Babies*5

Significantly reduced E. coli in colicky

infants (p=0.001)

Significantly increased lactobacilli in colicky infants (p=0.002) Study design: R, C, DB.

Intervention: L. reuteri Protectis once daily for 21 days in 50 colicky infants (age 2-16 weeks). Savino, et al 2010.

Promotes a Healthy Microbiota in **Babies Born Via C-Section***6

L. reuteri Protectis Gastrointestinal Health Clinical Trials

SECTION 1

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

2

4

Helping baby experience fewer GI symptoms.*

.....

Improves Gastrointestinal Motility*7

L. reuteri Placebo

Study design: R, DB, PC, PG.

Intervention: L. reuteri Protectis once daily for 30 days in 42 infants (age <4 months). Indrio, et al 2011.

Reduces the Frequency of **Regurgitation***8

L. reuteri Placebo Study design:

MC, DB, PC, R.

L. reuteri Protectis once daily for 3 months in 589 full-term newborns (age <1 week). Indrio, et al 2014.

Reduces the Incidence of **Colic***8

CRITICAL QUESTION

Are Babies Born with Colic?

Infant colic impacts the whole family.

Besides baby's presumed suffering, **colic is linked to maternal anxiety and depression**, *disrupts* the establishment of the mother-baby bond, *interferes* with breastfeeding and *contributes* to family dysfunction.^{9,10}

It is known that the **GI microbiota** is associated with infant colic, as babies with colic have *lower* levels of **lactobacilli** and *higher* levels of **E. coli** compared to non-colicky infants.⁵

It has been shown that alterations in the bacterial composition of the maternal GI microbiota can affect the development and function of baby's GI tract.¹¹ Could colic be the result of a disrupted maternal GI microbiota?

The mother's microbiota is important for baby's health.

Maternal Antibiotic Use **It has been shown** that **exposure to antibiotics** during pregnancy or delivery is associated with **infantile colic**. It is thought that maternal antibiotic exposure may *disrupt* the initial colonization of maternal microbes and thus be causally related to the development of colic.¹⁰

Prenatal Probiotic Supplementation **It is known** that the probiotic *L. reuteri* is an effective treatment **for infantile colic**, but *can colic be prevented*?* Studies now show that **prenatal supplementation** with probiotics **can prevent** the occurrence and **reduce the severity** of infantile colic.*^{12,13}

The Meconium Microbiome **In addition,** the microbiome of the first-pass meconium has been associated with **colic.** Infants who subsequently developed colic had a *lower* abundance of **lactobacilli** in their the first-pass meconium than non-colicky infants.¹⁴

SECTION 1-*L. reuteri* Protectis Gastrointestinal Health Clinical Trials

The Most Clinically Studied Probiotic for Colic

Eight Colic Treatment Studies ^{5, 15-21}	Two Colic Prevention Studies ^{8,22}	Nine Meta-Analyses ²³⁻³¹	Four International Clinical Guidelines ³²⁻³⁵
• Significant reduction in daily crying & fussing, <i>improved</i> the well-being of mom and baby, high parental satisfaction rate*	• Significant reduction in daily inconsolable crying time, reduced formula use, improved breastfeeding rates, saved families money*	• L. reuteri DSM 17938 is the only probiotic proven effective in infantile colic, especially in exclusively or predominantly breastfed infants*	• Supports the use of L. reuteri Protectis for functional gastrointestinal disorders in infants*

Promotes Regular **Bowel Movements***8

Placebo
Study design: MC, DB, PC, R.
Intervention:

L reuteri

L. reuteri **Protectis** once daily for the first 3 months of life in 589 infants (age <1 week). **Indrio, et al 2014.**

Increases Stool Frequency in Constipated Infants*³⁶

L. reuteri Protectis Immune Health Clinical Trials

Fewer Days on Antibiotics*38

More healthy days for baby.*

DOES THE MOTHER'S MICROBIOTA Influence the Development of Allergic Disease?

CRITICAL QUESTION

Does the Mother's Microbiota Influence the Development of Allergic Disease?

Allergic diseases including atopic dermatitis, food allergy, rhinitis, and asthma typically manifest in early childhood. Although genetic factors play a role, changes in the genotype cannot explain the rapid *increase* in the prevalence of allergy in affluent countries.

Microbial contact in early life is *essential* for the **development and maturation of the immune system**.³⁹ *Is our modern lifestyle affecting the transmission and composition of* **baby's microbiota** *and thus giving rise to allergic disease*?^{39,40}

Maternal Family Life

Maternal Antibiotic Exposure

Prenatal Probiotic Supplementation **Exposure to** a traditional farm environment during pregnancy demonstrates stronger protection against allergy development in baby than postnatal exposure alone.⁴¹⁻⁴³

Antibiotic use during pregnancy is associated with an increased risk of allergy and asthma development.^{41, 44}

Pre- and postnatal probiotic use is necessary to *reduce* the **risk of atopic dermatitis in infants** as supplementation to the baby alone seems to be *ineffective*.^{41, 45-47}

Less Sensitization at 2 Years of Age*48

L. reuteri Placebo

Study design: DB, PC, AP.

Intervention:

L. reuteri Protectis once daily from gestational week 36 until delivery in 109 pregnant women in families with a history of allergic disease, followed by the same dose in the infants for 12 months, with follow-up at 2 years. Bottcher, et al 2014.

Intervention:

L. reuteri **Protectis** once daily from gestational week 36 until delivery in 188 pregnant women in families with a history of allergic disease, followed by the same dose in the infants for 12 months, with follow-up at 2 years. **Abrahamsson, et al 2013.**

AP = Allergy prevention DB = Double blind PC = Placebo controlled R = Randomized

(877) 776-0101 www.everidis.com

Everidis Health Sciences, St. Louis, Missouri 63139

References: 1. Robertson RC, et al. Trends Microbiol 2019, 27:131-147. 2. Walter J, et al. Proc Natl Acad Sci USA 2011, 108:4645-4652. 3. Reuter G. Curr Issues Intest Microbiol 2001, 2:43-53. 4. Valeur N, et al. Appl Environ Microbiol 2004, 70:1176-1181. 5. Savino F, et al. Pediatrics 2010, 126:e526-533. 6. Garcia Rodenas CL, et al. J Pediatr Gastroenterol Nutr 2016, 63:681-687. 7. Indrio F, et al. Eur J Clin Invest 2011, 41:417-422. 8. Indrio F, et al. JAMA Pediatr 2014, 168:228-233. 9. Landgren K, et al. Open Nurs J 2012, 6:53-61. 10. Leppälehto E, et al. Neonatology 2018, 114:226-229. 11. Gohir W, et al. Pediatr Res 2015, 77:196-204. 12. Pourmirzaiee MA, et al. Eur J Pediatr 2020, 179:1619-1626. 13. Baldassarre ME, et al. Nutrients 2016, 8:677-689. 14. Korpela K, et al. Pediatr Res 2020, 88:776-783. 15. Savino F, et al. J Pediatr 2018, 192:171-177. 16. Mi GL, et al. Antonie Van Leeuwenhoek 2015, 107:1547-1553. 17. Chau K, et al. J Pediatr 2015, 166:74-78. 18. Szajewska H, et al. J Pediatr 2013, 162:257-262. 19. Savino F, et al. Pediatrics 2007, 119:e124-130. 20. Martinelli M, et al. Neurogastroenterol Motil 2017, 29. 21. Ashraf M, et al. Rawal Medical Journal 2015, 40:277-280. 22. Savino F, et al. Benef Microbes 2015, 6:245-251. 23. Sung V, et al. Pediatrics 2018, 141:e20171811. 24. Gutiérrez-Castrellón P, et al. Medicine (Baltimore) 2017, 96:e9375. 25. Dryl R, Szajewska H. Arch Med Sci 2018, 14:1137-1143. 26. Schreck Bird A, et al. J Pharm Pract 2016, 30:366-374. 27. Harb T, et al. J Pediatr Gastroenterol Nutr 2016, 62:668-686. 28. Xu M, et al. PLoS One 2015, 10:e0141445. 29. Urbanska M, Szajewska H. Eur J Pediatr 2014, 173:1327-1337. 30. Sung V, et al. JAMA Pediatr 2013, 167:1150-1157. 31. Anabrees J, et al. BMC Pediatr 2013, 13:186-197. 32. Hojsak I, et al. Acta Paediatr 2018, 107:927-937 33. Guarner F, Sanders ME. In World Gastroenterology Organisation Global Guidelines: 2017. 34. Cameron D, et al. World J Gastroenterol 2017, 23:7952-7964. 35. Cruchet S, et al. Paediatr Drugs 2015, 17:199-216. 36. Coccorullo P, et al. J Pediatr 2010, 157:598-602, 37, Weizman Z, et al. Pediatrics 2005, 115:5-9, 38, Gutierrez-Castrellon P, et al. Pediatrics 2014. 133:e904-909. 39. Renz H, Skevaki C. Nat Rev Immunol 2021, 21:177-191. 40. Blaser MJ, Falkow S. Nat Rev Microbiol 2009, 7:887-894. 41. Jenmalm MC. J Intern Med 2017, 282:484-495. 42. von Mutius E. J Allergy Clin Immunol 2016, 137:680-689 43. Yu J, et al. Clin Transl Allergy 2018, 8:34-54. 44. Wu P, et al. PLoS One 2016, 11:e0151705. 45. Li L, et al. Am J Clin Dermatol 2019, 20:367-377. 46. Zhang GQ, et al. Medicine (Baltimore) 2016, 95:e2562. 47. Amalia N, et al. Australas J Dermatol 2020, 61:e158-e173. 48. Böttcher MF, et al. Pediatr Allergy Immunol 2008, 19:497-504. 49. Abrahamsson TR, et al. J Allergy Clin Immunol 2007, 119:1174-1180.