SEE HOW FAR WE'VE COME	1989 First approved clinical trial protocol to use gene transfer into humans ¹	1990 Therapeutic gene transfer in patients with ADA-SCID ²	1999 Death of gene therapy clinical trial patient ³	2003 China approved a gene therapy-based product for clinical use ⁴	2009 Successful Phase 3 gene therapy clinical trial in the EU ⁵	2012 EMA approved first gene therapy product for LPL ⁶	2016 EMA approved gene therapy to treat patients with ADA-SCID ⁷	2017 FDA approved first gene therapies (CAR-T) for ALL ⁸ and B-cell lymphomas, ⁹
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$								and the first directly administered gene

44444 44444

Gene Therapies

Gene Therapy (GT) and Adeno-Associated Virus (AAV) Transduction

GT introduces a synthesized transgene that can act as a functional copy of a malfunctioning or missing gene, addressing the root cause of a monogenic disease.¹⁹⁻²¹

Virus-based vectors are commonly used to deliver transgenes for GT, due to their ability to transfer genetic material and initiate long-lasting gene expression.^{19,21,22}

All or some of the coding regions from the viral genome are deleted to avoid replication and toxicity; the inclusion of a promoter can help ensure rapid transcription of the transgene and protein production over time.^{22,23}

• Adeno-associated viruses (AAVs) are non-pathogenic, have a low risk of insertional mutagenesis, and have relatively low immunogenicity.¹⁹ O The AAV vector enters the target cell, travels to the nucleus, and releases the transgene.^{19, 24-26}

therapy for retinal dystrophy¹⁰

AAVs have different tissue tropisms allowing them to enter a broad range of target cell types.¹⁹

ADA-SCID, severe combined immunodeficiency due to adenosine deaminase deficiency; ALL, acute lymphocytic leukemia; CAR, chimeric antigen receptor; DLBCL, diffuse large B-cell lymphoma; FDA, U.S. Food and Drug Administration; LPL, lipoprotein lipase; PMBCL, primary mediastinal large B-cell lymphoma

Please note that this is a diagrammatic representation of gene therapy in general and is not designed to depict specific gene therapies Adapted from Akst. J. Targeting DNA. Available at https://www.the-scientist.com/features/targeting-dna-40937. Last accessed: February 2021 MED-CON-UNB-00073-US 03/2021

2018

FDA approved CAR T-cell therapy for DLBCL¹¹ and the EMA approved CAR T-cell therapies for B-cell ALL. DLBCL and PMBCL¹²

2019 FDA approved first systemic gene therapy for SMA¹³

2020 Systemic gene therapy for SMA approved for use in Japan, EU, Israel, Brazil and Canada¹⁴⁻¹⁸

O The transgene becomes an episome, a stable unit of DNA that functions separately from the chromosome and is able to employ the cell's innate machinery to activate gene expression.22,26

Episome

U NOVARTIS | **Reimagining Medicine**

References:

- Rosenberg SA, et al. N Engl J Med. 1990;323(9):570-578.
- Blaese RM, et al. Science. 1995;270(5235):475-480. 2.
- Sibbald B. CMAJ. 2001:164(11):1612. З.
- Zhang WW, et al. Hum Gene Ther. 2018;29(2):160-179. 4.
- 5. Wirth T. et al. Gene. 2013:525(2):162-169.
- 6. EMA (2012). European Medicines Agency recommends first gene therapy for approval. Available at: https://www.ema.europa.eu/en/news/european-medicines-agency -recommends-first-gene-therapy-approval. Last accessed: February 2021.
- 7. Hoggatt J. Cell. 2016;166(2):263.
- 8. FDA (2017). FDA approval brings first gene therapy to the United States. Available at: https://www.fda.gov/news-events/press-announcements/fda-approval-brings-firstgenetherapy-united-states. Last accessed: February 2021.
- 9. FDA (2017). FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. Available at: https://www.fda.gov/news-events/press-announcements/ fda-approves-car-t-cell-therapy-treat-adults-certain-types-large-b-cell-lymphoma. Last accessed: February 2021.
- 10. FDA (2017). FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. Available at: https://www.fda.gov/news-events/press-announcements/ fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss. Last accessed: February 2021.
- 11. FDA (2018). FDA approves tisagenlecleucel for adults with relapsed or refractory large B-cell lymphoma. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/ fda-approves-tisagenlecleucel-adults-relapsed-or-refractory-large-b-cell-lymphoma. Last accessed: February 2021.
- 12. EMA (2018). First two CAR-T cell medicines recommended for approval in the European Union. Available at: https://www.ema.europa.eu/en/news/first-two-car-t-cell-medicinesrecommended-approval-european-union. Last accessed: February 2021.

- 13. FDA (2019). FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. Available at: https://www.fda.gov/news-events/press-announcements/fda-approvesinnovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease. Last accessed: February 2021.
- 14. EMA (2020). ZOLGENSMA (onasemnogene abeparvovec) SmPC. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/zolgensma. Last accessed: February 2021.
- 15. Anvisa(2020). ZOLGENSMA (onasemnogene abeparvovec) Pl.
- 16. Novartis Pharmaceuticals Canada Inc. (2020). Zolgensma Product Monograph.
- 17. TrueMed Ltd. (2020). ZOLGENSMA (onasemnogene abeparvovec) PI.
- 18. Novartis (2020). Novartis receives approval from Japanese Ministry of Health, Labour and Welfare for Zolgensma® the only gene therapy for patients with spinal muscular atrophy (SMA). Available at: https://www.novartis.com/news/media-releases/novartis-receives-approval-from-japanese-ministryhealth-labour-and-welfare-zolgensma-only-gene-therapy-patients-spinal-muscular-atrophy-sma. Last accessed: March 2021.
- 19. Saraiva J. et al. J Control Release, 2016:241:94-109.
- 20. NIH (2021). What is gene therapy? Available at: https://ghr.nlm.nih.gov/primer/therapy/ genetherapy. Last accessed February 2021.
- 21. Naldini, L. Nature, 2015; 526(7573):351-360.
- 22. Thomas C, et al. Nat Rev Genet. 2003;4(5):346-358.
- 23. Lukashchuk L. et al. Mol Ther Methods Clin Dev. 2016:3:15055.
- 24. Fumoto S, et al. Targeted Gene Delivery: Importance of Administration Routes. In: Wei M; Novel Gene Therapy Approaches. IntechOpen. 2013;3-31.
- 25. Naso MF, et al. BioDrugs. 2017;31(4):317-334.
- 26. Lisowski L, et al. Curr Opin Pharmacol. 2015;24:59-67.