Using the power of our technology to create tomorrow's vaccines today.

OUR APPROACH

Our scientists are committed to developing vaccine candidates for some of the world's toughest viral threats by utilizing our innovative recombinant nanoparticle vaccine platform.¹

OUR SCIENCE

Our vaccine technology combines genetic engineering with the immunogenicity-enhancing properties of our proprietary adjuvant to efficiently produce highly immunogenic particles targeting some of the most pressing viral infectious diseases.¹

OUR PROPRIETARY TECHNOLOGY

We are committed to delivering novel products that leverage our innovative proprietary recombinant nanoparticle vaccine technology to help prevent a broad range of infectious diseases.

Our proprietary adjuvant is used in some of our vaccines to help enhance the immune response.¹

Vaccine ²⁻³⁹		Target Virus	Preclinical	Phase 1	Phase 2	Phase 3	Marketed
NVX-CoV2373: prototype vaccine (≥18 years)	\bigcirc	SARS coronavirus-2		\bigcirc	\bigcirc	\bigcirc	
NVX-CoV2373: prototype vaccine (12-<18 years)	\bigcirc	SARS coronavirus-2				\bigcirc	
NVX-CoV2373/ Seasonal influenza vaccine (older adults 65+ years)	\bigcirc	SARS coronavirus-2/ seasonal influenza					
NanoFlu™: Seasonal influenza vaccine (older adults 65+ years)	\bigcirc	Seasonal influenza					
ResVax™: RSV F vaccine (maternal immunization 18-40 years)		Respiratory syncytial virus (RSV)				*	
RSV F vaccine (older adults 60+ years)	\bigcirc	Respiratory syncytial virus (RSV)				•*	
RSV F vaccine (pediatrics 2-6 years)		Respiratory syncytial virus (RSV)					
Combination seasonal influenza/ RSV F vaccine (older adults 60+ years)	\bigcirc	Seasonal influenza/ respiratory syncytial virus (RSV)					
Ebola GP vaccine	\bigcirc	Ebola virus					
Middle East Respiratory Syndrome (MERS) vaccine		MERS coronavirus					
Severe Acute Respiratory Syndrome (SARS) vaccine		SARS coronavirus	•				
Proprietary saponin-based adjuvant OActive,	not rec	ruiting ONot yet recruitir	ng 🖉 Recruitir	ng Com	pleted * D	id not meet pri	mary endpoint

As of July 30, 2021.

NVX-CoV2373 prototype vaccine (NCT04368988, NCT04533399, NCT04583995, NCT04611802)²¹⁴

- NVX-CoV2373 is a proprietary adjuvanted vaccine using recombinant nanoparticle technology to generate antigen derived from the coronavirus spike protein
- A pediatric expansion in adolescents (12-<18 years) of the phase 3 clinical trial involving NVX-CoV2373 is currently active^{9,13,14}

NVX-CoV2373/Seasonal influenza vaccine (NCT04961541)¹⁵⁻¹⁸

• Preclinical studies have been completed and phase 1 study has not yet begun recruiting

NanoFlu™: Seasonal influenza vaccine (older adults 65+ years) (NCT04120194, NCT03658629, NCT03293498)¹⁹⁻²³

• NanoFlu[™], our proprietary adjuvanted vaccine, completed clinical trials to assess safety and immunogenicity compared with Fluzone® Quadrivalent.²³ The phase 3 trial met the primary immunogenicity endpoint

ResVax[™]: Respiratory syncytial virus (RSV) F vaccine (infants via maternal immunization) (NCT02247726, NCT02624947)²⁴⁻²⁹

ResVax[™] - RSV F vaccine, an aluminum-adjuvanted RSV F vaccine, completed clinical trials to assess safety and tolerability in reducing hospitalizations in infants with RSV lower respiratory tract infection via maternal vaccination.^{26,28} ResVax[™] - RSV F vaccine did not meet the primary endpoint in a phase 3 clinical trial²⁷

RSV F vaccine (older adults 60+ years) (NCT03026348, NCT02266628, NCT02608502)^{24,30-33}

• RSV F vaccine for older adults completed clinical trials to assess immunogenicity and safety with and without aluminum phosphate or proprietary adjuvants.³¹ RSV F vaccine in older adults 60+ years did not meet the primary endpoint in a phase 3 clinical trial

RSV F vaccine (pediatrics 2-6 years) (NCT02296463)^{24,34}

• RSV F vaccine completed a phase 1 trial to assess safety and immunogenicity in children between 2 and 6 years of age

Combination seasonal influenza/RSV F vaccine (older adults 60+ years) (NCT01709019)^{24,35}

 Combination seasonal influenza/RSV F vaccine completed a phase 1 trial to evaluate safety and immunogenicity against both seasonal influenza and RSV

Ebola glycoprotein (GP) vaccine (NCT02370589)^{36,37}

• Ebola GP adjuvanted vaccine, which utilizes core recombinant baculovirus technology, completed a phase 1 trial to assess immunogenicity and tolerability in humans

Middle East Respiratory Syndrome (MERS) vaccine³⁸

• MERS vaccine candidate was developed from the major surface spike protein of the circulating MERS strain and blocks infection in laboratory studies

Severe Acute Respiratory Syndrome (SARS) vaccine³⁹

• SARS vaccine candidate was developed from the major spike protein and blocks infection in laboratory studies

References:

I. Novavax.com. Science and technology. Accessed July 8, 2021. https://www.novavax.com/science-and-technology-overview

2. Tian J-H, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021;12(1):372. doi: 10.1038/s41467-020-20653-8

3. Alter G, Gorman M, Patel N, et al. Collaboration between the Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M[™] vaccination. Preprint. *Res Sq.* 2021;rs.3.rs-200342. Published 2021 Feb 15. doi:10.21203/rs.3.rs-200342/v1

4. Guebre-Xabier M, Patel N, Tian JH, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. *Vaccine*. 2020;38(50):7892-7896.

5. Bangaru S, Ozorowski G, Turner HL, et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. *Science*. 2020;370(6520):1089-1094.

6. Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383(24):2320-2332.

7. Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1899-1909.

8. Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine [published online ahead of print, 2021 Jun 30]. N Engl J Med. 2021;NEJMoa2107659. doi:10.1056/NEJMoa2107659

9. A study to evaluate the efficacy, immune response, and safety of a COVID-19 vaccine in adults \geq 18 years with a pediatric expansion in adolescents (12-17 years) at risk for SARS-CoV-2. ClinicalTrials.gov identifier: NCT04611802. Updated May 6, 2021. Accessed July 8, 2021. https://clinicaltrials.gov/ct2/show/NCT04611802

10. Evaluation of the safety and immunogenicity of a SARS-CoV-2 rS nanoparticle vaccine with/without Matrix-M adjuvant. ClinicalTrials.gov identifier: NCT04368988. Updated October 9, 2020. Accessed July 8, 2021. https://www.clinicaltrials.gov/ct2/show/NCT04368988

11. A study looking at the effectiveness and safety of a COVID-19 vaccine in South African adults. ClinicalTrials.gov identifier: NCT04533399. Updated November 2, 2020. Accessed July 8, 2021. https://clinicaltrials.gov/ct2/show/NCT04533399

12. A study looking at the effectiveness, immune response, and safety of a COVID-19 vaccine in adults in the United Kingdom. ClinicalTrials.gov identifier: NCT04583995. Updated November 17, 2020. Accessed July 14, 2021. <u>https://clinicaltrials.gov/ct2/show/NCT04583995</u>

13. Kunzmann K. Novavax initiates pediatric, adolescent COVID-19 vaccine study. Accessed July 8, 2021. <u>https://www.contagionlive.com/view/novavax-initiates-pediatric-adolescent-covid-19-vaccine-study</u>

14. Novavax.com. PREVENT-19 phase 3 trial data factsheet. Accessed July 15, 2021. <u>https://www.novavax.com/sites/default/files/2021-01/Novavax-PREVENT-19-Factsheet.pdf</u>

15. Massare MJ, Patel N, Zhou B, et al. Combination respiratory vaccine containing recombinant SARS-CoV-2 spike and quadrivalent seasonal influenza hemagglutinin nanoparticles with Matrix-M adjuvant. *bioRxiv*. https://doi.org/10.1101/2021.05.05.442782

16. Phase 1/2 study of the safety and immunogenicity of influenza and COVID-19 combination vaccine. ClinicalTrials.gov identifier: NCT04961541. Updated July 14, 2021. Accessed July 14, 2021. https://clinicaltrials.gov/ct2/show/NCT04961541

17. Toback S, Galiza E, Cosgrove C, et al, on behalf of the 2019 nCoV-302 Study Group. Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines. *Lancet*. In press.

18. Novavax announces positive results from first study of influenza vaccine and COVID-19 vaccine candidate administered simultaneously. Press release. PRNewswire; June 14, 2021.

19. Smith G, Liu Y, Flyer D, et al. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M[™] adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes. *Vaccine*. 2017;35(40):5366-5372. doi: 10.1016/j. vaccine.2017.08.021

20. Shinde V, Cai R, Plested J, et al. Induction of cross-reactive hemagglutination inhibiting antibody and polyfunctional CD4+ T-cell responses by a recombinant Matrix-M-adjuvanted hemagglutinin nanoparticle influenza vaccine [published online ahead of print, 2020 Nov 4]. *Clin Infect Dis.* 2020;ciaa1673. doi:10.1093/cid/ciaa1673

21. Evaluation of the safety and immunogenicity of a recombinant trivalent nanoparticle influenza vaccine with Matrix M-1 adjuvant (NanoFlu). ClinicalTrials.gov identifier: NCT03293498. Updated October 17, 2019. Accessed July 8, 2021. <u>https://clinicaltrials.gov/ct2/show/NCT03293498</u>

22. Phase 2 dose and formulation confirmation of Quad-NIV in older adults. ClinicalTrials.gov identifier: NCT03658629. Updated April 28, 2020. Accessed July 29, 2021. https://clinicaltrials.gov/ct2/show/NCT03658629

23. Phase 3 pivotal trial of NanoFlu™ in older adults. ClinicalTrials.gov identifier: NCT04120194. Updated April 17, 2020. Accessed July 8, 2021. <u>https://</u> clinicaltrials.gov/ct2/show/NCT04120194

24. Raghunandan R, Lu H, Zhou B, et al. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. *Vaccine*. 2014;32(48):6485-6492. doi: 10.1016/j.vaccine.2014.09.030
25. Glenn GM, Smith G, Fries L, et al. Safety and immunogenicity of a Sf9 insect cell-derived respiratory syncytial virus fusion protein nanoparticle vaccine. *Vaccine*. 2013;31(3):524-532. doi: 10.1016/j.vaccine.2012.11.009

26. RSV F vaccine maternal immunization study in healthy third-trimester pregnant women. ClinicalTrials.gov identifier: NCT02247726. Updated June 6, 2017. Accessed July 8, 2021. https://clinicaltrials.gov/ct2/show/NCT02247726

27. Madhi SA, Polack FP, Piedra PA, et al, for the Prepare Study Group. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N Engl J Med. 2020;383(5):426-439. doi: 10.1056/NEJMoa1908380

28. Novavax announces topline results from phase 3 Prepare[™] trial of ResVax[™] for prevention of RSV disease in infants via maternal immunization. Press release. Nasdaq; February 28, 2019.

29. A study to determine the safety and efficacy of the RSV F vaccine to protect infants via maternal immunization. ClinicalTrials.gov identifier: NCT02624947. Updated April 14, 2020. Accessed July 8, 2021. https://www.clinicaltrials.gov/ct2/show/NCT02624947

30. Fries L, Shinde V, Stoddard JJ, et al. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults. *Immun Ageing.* 2017;14:8. doi: 10.1186/s12979-017-0090-7

31. Placebo-controlled study to evaluate the safety and immunogenicity of the RSV-F vaccine in elderly adults. ClinicalTrials.gov identifier: NCT02266628. Updated June 6, 2017. Accessed July 8, 2021. https://clinicaltrials.gov/ct2/show/NCT02266628

32. Safety and immunogenicity study to evaluate single- or two-dose regimens of RSV F vaccine with and without aluminum phosphate or Matrix-MI[™] adjuvants in clinically-stable older adults. ClinicalTrials.gov identifier: NCT03026348. Updated August 31, 2018. Accessed July 8, 2021. <u>https://clinicaltrials.gov/ct2/show/NCT03026348</u>

33. A study to evaluate the efficacy of an RSV F vaccine in older adults. ClinicalTrials.gov identifier: NCT02608502. Updated September 19, 2017. Accessed July 8, 2021. <u>https://clinicaltrials.gov/ct2/show/NCT02608502</u>

34. A phase I randomized, observer-blinded, dose-ranging study in healthy subjects 24 to <72 months of age. ClinicalTrials.gov identifier: NCT02296463. Updated April 28, 2016. Accessed July 8, 2021. https://clinicaltrials.gov/ct2/show/NCT02296463

35. RSV-F vaccine and influenza vaccine co-administration study in the elderly. ClinicalTrials.gov identifier: NCT01709019. Updated March 5, 2014. Accessed July 8, 2021. https://clinicaltrials.gov/ct2/show/NCT01709019

36. Bengtsson KL, Song H, Stertman L, et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine. 2016;34(16):1927-1935. doi: 10.1016/j.vaccine.2016.02.033

37. Study to evaluate the immunogenicity and safety of an Ebola virus (EBOV) glycoprotein (CP) vaccine in healthy adults. ClinicalTrials.gov identifier: NCT02370589. Updated September 22, 2016. Accessed July 8, 2021. <u>https://clinicaltrials.gov/ct2/show/NCT02370589</u>

38. Coleman CM, Venkataraman T, Liu YV, et al. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. *Vaccine*. 2017;35(12):1586-1589. doi: 10.1016/j.vaccine.2017.02.012

39. Coleman CM, Liu YV, Mu H, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. *Vaccine*. 2014;32(26):3169-3174. doi: 10.1016/j.vaccine.2014.04.016