
Exploring AMD’s
Ambitious ROCm Initiative

 Get Rockin’
DISCOVERING ROCm
AMD’s ROCm platform brings new freedom and portability
to the GPU space. By Joe Casad

WWW.ADMIN-MAGAZINE.COMWWW.ADMIN-MAGAZINE.COM

Three years ago, AMD released the innovative ROCm hard-
ware-accelerated, parallel-computing environment [1] [2].
Since then, the company has continued to refine its bold
vision for an open source, multiplatform, high-performance
computing (HPC) environment. Over the past three years,
ROCm developers have contributed many new features and
components to the ROCm open software platform.

ROCm is a universal platform for GPU-accelerated com-
puting. A modular design lets any hardware vendor
build drivers that support the ROCm stack [3]. ROCm
also integrates multiple programming languages and
makes it easy to add support for other languages. ROCm
even provides tools for porting vendor-specific CUDA
code into a vendor-neutral ROCm format, which makes
the massive body of source code written for CUDA
available to AMD hardware and other hardware envi-
ronments.

What is ROCm, and why is it poised to shake up the whole
HPC industry? The best way to get familiar is to look inside.

Big Picture
General programming languages like C++ were developed
before the birth of GPU-based parallel computing, and the
standard forms of the language do not have the features
necessary to capitalize on all the benefits of today’s high-
performance computers. In the past, GPU vendors devel-
oped their own dialects and drivers to activate GPU-based
optimizations for their own hardware. The result was a

tangle of proprietary specs and incompatible languages.
The absence of a unifying, open source platform cost
untold hours of development time and left coders with
few options. Code was written for a single hardware plat-
form, and it required an enormous investment of time and
expense to make the code ready for a different environ-
ment. This vendor lock-in caused inefficient programming
practices and limited the organization’s ability to seek a
long-term, cost-efficient solution.

The ROCm developers knew the HPC industry needed
a universal solution that would end the problem of pro-
prietary specs and incompatible languages, so they built
ROCm as a universal open platform that allows the devel-
oper to write the code once and compile it for multiple
environments. ROCm supports a number of programming
languages and is flexible enough to interface with different
GPU-based hardware environments (Figure 1).

At the center of the ROCm environment is a technology
known as Heterogeneous-Compute Interface for Porta-
bility (HIP) [4]. HIP lets you create code that is ready
to compile for either the AMD or CUDA/ NVIDIA GPU
environment.

AMD maintains a special version of the open source
Clang compiler for preparing and compiling HIP code.
The HIP/ Clang compiler is available for free download
at GitHub. The Clang developers are currently working
on porting the HIP extensions upstream to the mainline

ten in C/C++, Python, and Fortran. ROCm also supports the
Tau performance system, a portable profiling and tracing
toolkit for performance analysis of parallel programs written
in Fortran, C, C++, UPC, Java, and Python. Beyond the Tau
tools, which are available now, AMD continues to work on
expanding support for other tools and performance profil-
ers for large systems, such as PAPI and the HPCToolkit,
which will be openly available in the future.

A system management interface (ROCm-SMI) supports a
number of functions related to system time and temperature
settings. In GPU environments, clock speed is an important
consideration, and AMD GPUs can operate at a variety of
different clock levels to optimize speed and energy usage.
As with all high-performance environments, the clock speed
has an effect on energy use, which has an effect on the
temperature of the system. ROCm-SMI has options for mea-
suring temperature, controlling voltage, and managing the
fan speed. You can integrate the commands of the system
management interface into programs and scripts to build
speed and temperature controls directly into the program-
ming environment. See the ROCm documentation for more
information on ROCm management and development tools.

New Generation
Free software happens in communities, and the free ROCm
platform has already unleashed a flurry of community
development. GitHub is home to a number of open source
projects that extend and expand the ROCm ecosystem for
HPC, including the NWChem computational chemistry
toolkit, as well as the LAMMPS, NAMD, and Gromacs
molecular dynamics simulators.

The latest ROCm update occurs as AMD continues to build
on its new generation of hardware for machine learning
and HPC. The new Vega 7nm technology-based product
line includes the Radeon Instinct™ MI50 16GB and 32GB
GPUs [9], which operate at 26.8 (FP16), 13.3 (FP32),
and 6.6 (FP64) TFLOPS peak performance, have up to 1
TB/ s memory bandwidth and are, according to AMD, the
world’s first PCIe® Gen 4 accelerators. The new Infinity
Fabric™ link technology delivers up to 184 GB/ s peer-to-
peer bandwidth – up to 4.75 times faster than PCIe 3.0
alone. These hardware innovations let you group GPUs
together into “hives,” which could further boost perfor-
mance for some configuration scenarios.

The latest ROCm release is designed to exploit the powerful
possibilities of AMD’s advanced GPU-based HPC products,
with built-in switches and optimizations that will bring
this next-generation GPU hardware to its fullest potential.
ROCm 3.0 supports the new 2nd Gen AMD EPYC™ proces-

sor series [10], which comes with up to 64 cores and 128
threads and has broken the barrier on CPU performance
with 100 performance world records [11]. The new ROCm
release also includes support for the Bfloat16 floating-point
math format.

Conclusion
AMD’s ROCm platform is a bold step toward portability and
heterogeneous computing in the HPC space. AMD’s GPU
product line now has an equivalent to the benefits avail-
able with NVIDIA’s GPUs through the CUDA framework,
but ROCm goes a step further by creating a complete lan-
guage- and hardware-independent path for GPU-accelerated
programming. A developer can write the code once and
then compile it for either the CUDA/ NVIDIA or the ROCm/
AMD environment. Upstream Support for ROCm-enabled
GPUs in machine-learning frameworks like TensorFlow and
PyTorch/ Caffe2 ensures immediate relevance for projects
that depend on these tools.

AMD’s vision for a GPU-based, all-open software program-
ming stack is disrupting the whole HPC industry. The open
and modular architecture means other vendors can inte-
grate their own technologies into the ROCm stack, and the
easy path for porting existing languages and frameworks
to ROCm’s neutral format will simplify the learning curve
for programmers who want to stay within their preferred
coding environment. n

Resources

 ROCm:

[1] [rocm. github. io]

[2] [amd. com/ ROCm]

[3] ROCm documentation:

[http:// rocm‑documentation. readthedocs. io/]

[4] HIP: [https:// github. com/ ROCm‑Developer‑Tools/ HIP]

 HPC:

[5] [amd. com/ ROCm/ HPC]

[6] [amd. com/ HPC]

 Machine Learning:

[7] [amd. com/ ROCm/ ML]

[8] MIOpen: [https:// rocmsoftwareplatform. github. io/

 MIOpen/ doc/ html/ index. html]

 Products:

[9] Radeon Instinct GPUs: [amd. com/ INSTINCT]

[10] 2nd Gen EPYC CPUs: [amd. com/ EPYC]

[11] [amd. com/ WorldRecords]

AMD_Discover_ROCm_.indd 1 11/7/19 3:51 PM

is an open standard maintained by the nonprofit Khronos
group that was originally envisioned as a heterogeneous
framework for supporting CPU- and GPU-based comput-
ing in parallel programming environments. In other words,
OpenCL has some goals that are very similar to ROCm.
AMD is a member of the Khronos group and has invested
heavily over the years in OpenCL as a framework for GPU-
accelerated programming.

The OpenMP parallel programming API supports offload-
ing to Radeon GPUs through Clang, so developers can
access the advanced capabilities of Radeon GPUs from
within OpenMP.

HSA-Compliant System Runtime
The foundation for the ROCm environment is the ROCm
kernel driver and system runtime stack. The ROCr system
runtime API, which resides above the kernel driver, is a
language-independent runtime that complies with Hetero-
geneous System Architecture (HSA) specifications. HSA is
an industry standard designed to support the integration
of GPUs and CPUs with shared tasks and scheduling.

The modular form of the ROCm system runtime stack means
the system runtime could one day support additional pro-
gramming languages and additional hardware acceleration
devices. In the true spirit of heterogeneous computing, the
kernel layer below is also implemented as a separate module
to facilitate easy porting to other kernel environments.

ROCm also supports a number of powerful APIs and
libraries to optimize performance for GPU-based HPC
scenarios. For instance, the RCCL (pronounced “rickle”)
collective library is a powerful tool for supporting multiple
GPUs on a single node in single- and multi-process opera-

tions, as well as extending the environment to include
multi-node communication.

Machine Learning and AI
ROCm is built to accommodate future technologies, and
the future is machine learning and artificial intelligence.
Many of the high-performance computer systems that
depend on AMD’s GPU-based computing environment
are used with AI research and development, and ROCm is
designed from the ground up as a versatile and complete
platform for machine learning and AI (Figure 3).

Recent versions of the TensorFlow and PyTorch machine-
learning frameworks provide native ROCm support. ROCm
also supports the MIOpen machine-learning library [8].
MIOpen serves as a middleware layer between AI frame-
works and the ROCm platform, supporting both OpenCL
and HIP-based programming environments. The latest ver-
sion of MIOpen includes optimizations of new workloads
for Recurrent Neural Networks and Reinforcement Learn-
ing, as well as Convolution Neural Network acceleration.

The latest version of ROCm adds enhanced support for
distributed training and the deep learning model. Many
example codes have already been validated on AMD Rad-
eon Instinct GPUs for TensorFlow on ROCm.

Containers and ROCm
A recent trend in HPC is increased reliance on containers.
Containers are easy to extend and adapt to specific situations,
and a containerized solution is an efficient option for many
HPC configurations and workloads. The ROCm developers
have continued to improve and expand ROCm support for
container technologies, such as Docker and Singularity.

The latest version of ROCm includes support for Kuber-
netes, Slurm, OpenShift, and other important tools for
managing and deploying container environments. Also,
the ROCm-docker repository contains a framework for
building the ROCm software layers into portable Docker
container images. If you work within a containerized envi-
ronment, ROCm’s Docker tools will allow you to integrate
ROCm easily into your existing organizational structure.

Other Tools
The ROCm ecosystem is envisioned as a complete open
development environment that includes a comprehensive
toolkit of developer utilities. ROCm comes with a collec-
tion of debugging tools, including a HIP debugger and
ROCm-GDB, a version of the GDB debugger modified for
the ROCm platform. The ROC Profiler and ROC Tracer
utilities provide performance analysis for programs writ-

Clang compiler. Once this upstream effort is complete,
a separate HIP/ Clang compiler won’t be necessary, and
HIP will simply be a compiler option within the standard
Clang environment.

What About CUDA?
CUDA is an example of a proprietary language designed
to work with only one hardware vendor. HIP and the
ROCm environment eliminate the need for single-vendor
languages like CUDA. However, the ROCm developers are
well aware that lots of CUDA code is already out there
in the world, so ROCm provides an easy path for porting
CUDA code to the vendor-neutral HIP format automati-
cally. Once the code is converted to HIP, you can compile
it for AMD hardware using the HIP/ Clang compiler. As
shown in Figure 2, a CUDA header is all that is needed
to prepare the HIP code for the NVIDIA tool chain and the
NVCC compiler.

ROCm provides two different alternatives for converting
CUDA code to HIP format:

n hipify-perl – a Perl script that you can run on the
source code to convert a CUDA program to equivalent
HIP code.

n hipify-clang – a preprocessor included with the HIP/
Clang compiler that performs the conversion auto-
matically as a standalone preprocessing stage of the
compiler process.

The best option for your project will depend upon the
details. The Perl script is often easier to use, especially for

smaller jobs. The preprocessor gives more extensive hints
and error messages and is therefore better suited for large
and complex projects.

As a proof of concept, the ROCm team ported the whole
Caffe machine-learning framework (with around 55,000
lines of code) from CUDA to HIP: 99.6 percent of the code
went unmodified or was automatically converted, and the
remaining 0.4 percent took less than a week of developer
time to tie up loose ends. The preprocessor can often
perform the conversion without any cleanup, for some
programs; however, the script provides greater flexibility.

The power to integrate previously written CUDA code
with the all-open ROCm makes ROCm a truly universal
platform. Near-automatic conversion options eliminate
time barriers for CUDA shops looking for a more flexible
and a less restrictive solution.

Support for Other Languages
The versatile LLVM/ Clang compiler infrastructure means
ROCm supports a wide range of programmer preferences
within the C/ C++ language family, from standard C, to
standard C++, to STL parallel extensions, to the turbo-
charged GPU-based features embodied in C++ AMP. HIP
and the HIP conversion options bring CUDA into the mix.
Beyond C and C++, the ROCm platform also supports
Python Anaconda. Anaconda is a specialized version of
Python tailored for scientific computing and large-scale
data processing. ROCm also provides native support for the
OpenCL (Open Compute Language) framework. OpenCL

Figure 2: ROCm’s HIP format lets the vendor write the code once
and compile it for different hardware environments.

Figure 3: The versatile ROCm provides support for several popular
libraries and machine-learning frameworks.

WWW.ADMIN-MAGAZINE.COMWWW.ADMIN-MAGAZINE.COM

Figure 1: ROCm is designed as a universal platform, supporting
multiple languages and GPU technologies.

AMD_Discover_ROCm_.indd 2 11/7/19 3:51 PM

is an open standard maintained by the nonprofit Khronos
group that was originally envisioned as a heterogeneous
framework for supporting CPU- and GPU-based comput-
ing in parallel programming environments. In other words,
OpenCL has some goals that are very similar to ROCm.
AMD is a member of the Khronos group and has invested
heavily over the years in OpenCL as a framework for GPU-
accelerated programming.

The OpenMP parallel programming API supports offload-
ing to Radeon GPUs through Clang, so developers can
access the advanced capabilities of Radeon GPUs from
within OpenMP.

HSA-Compliant System Runtime
The foundation for the ROCm environment is the ROCm
kernel driver and system runtime stack. The ROCr system
runtime API, which resides above the kernel driver, is a
language-independent runtime that complies with Hetero-
geneous System Architecture (HSA) specifications. HSA is
an industry standard designed to support the integration
of GPUs and CPUs with shared tasks and scheduling.

The modular form of the ROCm system runtime stack means
the system runtime could one day support additional pro-
gramming languages and additional hardware acceleration
devices. In the true spirit of heterogeneous computing, the
kernel layer below is also implemented as a separate module
to facilitate easy porting to other kernel environments.

ROCm also supports a number of powerful APIs and
libraries to optimize performance for GPU-based HPC
scenarios. For instance, the RCCL (pronounced “rickle”)
collective library is a powerful tool for supporting multiple
GPUs on a single node in single- and multi-process opera-

tions, as well as extending the environment to include
multi-node communication.

Machine Learning and AI
ROCm is built to accommodate future technologies, and
the future is machine learning and artificial intelligence.
Many of the high-performance computer systems that
depend on AMD’s GPU-based computing environment
are used with AI research and development, and ROCm is
designed from the ground up as a versatile and complete
platform for machine learning and AI (Figure 3).

Recent versions of the TensorFlow and PyTorch machine-
learning frameworks provide native ROCm support. ROCm
also supports the MIOpen machine-learning library [8].
MIOpen serves as a middleware layer between AI frame-
works and the ROCm platform, supporting both OpenCL
and HIP-based programming environments. The latest ver-
sion of MIOpen includes optimizations of new workloads
for Recurrent Neural Networks and Reinforcement Learn-
ing, as well as Convolution Neural Network acceleration.

The latest version of ROCm adds enhanced support for
distributed training and the deep learning model. Many
example codes have already been validated on AMD Rad-
eon Instinct GPUs for TensorFlow on ROCm.

Containers and ROCm
A recent trend in HPC is increased reliance on containers.
Containers are easy to extend and adapt to specific situations,
and a containerized solution is an efficient option for many
HPC configurations and workloads. The ROCm developers
have continued to improve and expand ROCm support for
container technologies, such as Docker and Singularity.

The latest version of ROCm includes support for Kuber-
netes, Slurm, OpenShift, and other important tools for
managing and deploying container environments. Also,
the ROCm-docker repository contains a framework for
building the ROCm software layers into portable Docker
container images. If you work within a containerized envi-
ronment, ROCm’s Docker tools will allow you to integrate
ROCm easily into your existing organizational structure.

Other Tools
The ROCm ecosystem is envisioned as a complete open
development environment that includes a comprehensive
toolkit of developer utilities. ROCm comes with a collec-
tion of debugging tools, including a HIP debugger and
ROCm-GDB, a version of the GDB debugger modified for
the ROCm platform. The ROC Profiler and ROC Tracer
utilities provide performance analysis for programs writ-

Clang compiler. Once this upstream effort is complete,
a separate HIP/ Clang compiler won’t be necessary, and
HIP will simply be a compiler option within the standard
Clang environment.

What About CUDA?
CUDA is an example of a proprietary language designed
to work with only one hardware vendor. HIP and the
ROCm environment eliminate the need for single-vendor
languages like CUDA. However, the ROCm developers are
well aware that lots of CUDA code is already out there
in the world, so ROCm provides an easy path for porting
CUDA code to the vendor-neutral HIP format automati-
cally. Once the code is converted to HIP, you can compile
it for AMD hardware using the HIP/ Clang compiler. As
shown in Figure 2, a CUDA header is all that is needed
to prepare the HIP code for the NVIDIA tool chain and the
NVCC compiler.

ROCm provides two different alternatives for converting
CUDA code to HIP format:

n hipify-perl – a Perl script that you can run on the
source code to convert a CUDA program to equivalent
HIP code.

n hipify-clang – a preprocessor included with the HIP/
Clang compiler that performs the conversion auto-
matically as a standalone preprocessing stage of the
compiler process.

The best option for your project will depend upon the
details. The Perl script is often easier to use, especially for

smaller jobs. The preprocessor gives more extensive hints
and error messages and is therefore better suited for large
and complex projects.

As a proof of concept, the ROCm team ported the whole
Caffe machine-learning framework (with around 55,000
lines of code) from CUDA to HIP: 99.6 percent of the code
went unmodified or was automatically converted, and the
remaining 0.4 percent took less than a week of developer
time to tie up loose ends. The preprocessor can often
perform the conversion without any cleanup, for some
programs; however, the script provides greater flexibility.

The power to integrate previously written CUDA code
with the all-open ROCm makes ROCm a truly universal
platform. Near-automatic conversion options eliminate
time barriers for CUDA shops looking for a more flexible
and a less restrictive solution.

Support for Other Languages
The versatile LLVM/ Clang compiler infrastructure means
ROCm supports a wide range of programmer preferences
within the C/ C++ language family, from standard C, to
standard C++, to STL parallel extensions, to the turbo-
charged GPU-based features embodied in C++ AMP. HIP
and the HIP conversion options bring CUDA into the mix.
Beyond C and C++, the ROCm platform also supports
Python Anaconda. Anaconda is a specialized version of
Python tailored for scientific computing and large-scale
data processing. ROCm also provides native support for the
OpenCL (Open Compute Language) framework. OpenCL

Figure 2: ROCm’s HIP format lets the vendor write the code once
and compile it for different hardware environments.

Figure 3: The versatile ROCm provides support for several popular
libraries and machine-learning frameworks.

WWW.ADMIN-MAGAZINE.COMWWW.ADMIN-MAGAZINE.COM

Figure 1: ROCm is designed as a universal platform, supporting
multiple languages and GPU technologies.

AMD_Discover_ROCm_.indd 2 11/7/19 3:51 PM

Exploring AMD’s
Ambitious ROCm Initiative

 Get Rockin’
DISCOVERING ROCm
AMD’s ROCm platform brings new freedom and portability
to the GPU space. By Joe Casad

WWW.ADMIN-MAGAZINE.COMWWW.ADMIN-MAGAZINE.COM

Three years ago, AMD released the innovative ROCm hard-
ware-accelerated, parallel-computing environment [1] [2].
Since then, the company has continued to refine its bold
vision for an open source, multiplatform, high-performance
computing (HPC) environment. Over the past three years,
ROCm developers have contributed many new features and
components to the ROCm open software platform.

ROCm is a universal platform for GPU-accelerated com-
puting. A modular design lets any hardware vendor
build drivers that support the ROCm stack [3]. ROCm
also integrates multiple programming languages and
makes it easy to add support for other languages. ROCm
even provides tools for porting vendor-specific CUDA
code into a vendor-neutral ROCm format, which makes
the massive body of source code written for CUDA
available to AMD hardware and other hardware envi-
ronments.

What is ROCm, and why is it poised to shake up the whole
HPC industry? The best way to get familiar is to look inside.

Big Picture
General programming languages like C++ were developed
before the birth of GPU-based parallel computing, and the
standard forms of the language do not have the features
necessary to capitalize on all the benefits of today’s high-
performance computers. In the past, GPU vendors devel-
oped their own dialects and drivers to activate GPU-based
optimizations for their own hardware. The result was a

tangle of proprietary specs and incompatible languages.
The absence of a unifying, open source platform cost
untold hours of development time and left coders with
few options. Code was written for a single hardware plat-
form, and it required an enormous investment of time and
expense to make the code ready for a different environ-
ment. This vendor lock-in caused inefficient programming
practices and limited the organization’s ability to seek a
long-term, cost-efficient solution.

The ROCm developers knew the HPC industry needed
a universal solution that would end the problem of pro-
prietary specs and incompatible languages, so they built
ROCm as a universal open platform that allows the devel-
oper to write the code once and compile it for multiple
environments. ROCm supports a number of programming
languages and is flexible enough to interface with different
GPU-based hardware environments (Figure 1).

At the center of the ROCm environment is a technology
known as Heterogeneous-Compute Interface for Porta-
bility (HIP) [4]. HIP lets you create code that is ready
to compile for either the AMD or CUDA/ NVIDIA GPU
environment.

AMD maintains a special version of the open source
Clang compiler for preparing and compiling HIP code.
The HIP/ Clang compiler is available for free download
at GitHub. The Clang developers are currently working
on porting the HIP extensions upstream to the mainline

ten in C/C++, Python, and Fortran. ROCm also supports the
Tau performance system, a portable profiling and tracing
toolkit for performance analysis of parallel programs written
in Fortran, C, C++, UPC, Java, and Python. Beyond the Tau
tools, which are available now, AMD continues to work on
expanding support for other tools and performance profil-
ers for large systems, such as PAPI and the HPCToolkit,
which will be openly available in the future.

A system management interface (ROCm-SMI) supports a
number of functions related to system time and temperature
settings. In GPU environments, clock speed is an important
consideration, and AMD GPUs can operate at a variety of
different clock levels to optimize speed and energy usage.
As with all high-performance environments, the clock speed
has an effect on energy use, which has an effect on the
temperature of the system. ROCm-SMI has options for mea-
suring temperature, controlling voltage, and managing the
fan speed. You can integrate the commands of the system
management interface into programs and scripts to build
speed and temperature controls directly into the program-
ming environment. See the ROCm documentation for more
information on ROCm management and development tools.

New Generation
Free software happens in communities, and the free ROCm
platform has already unleashed a flurry of community
development. GitHub is home to a number of open source
projects that extend and expand the ROCm ecosystem for
HPC, including the NWChem computational chemistry
toolkit, as well as the LAMMPS, NAMD, and Gromacs
molecular dynamics simulators.

The latest ROCm update occurs as AMD continues to build
on its new generation of hardware for machine learning
and HPC. The new Vega 7nm technology-based product
line includes the Radeon Instinct™ MI50 16GB and 32GB
GPUs [9], which operate at 26.8 (FP16), 13.3 (FP32),
and 6.6 (FP64) TFLOPS peak performance, have up to 1
TB/ s memory bandwidth and are, according to AMD, the
world’s first PCIe® Gen 4 accelerators. The new Infinity
Fabric™ link technology delivers up to 184 GB/ s peer-to-
peer bandwidth – up to 4.75 times faster than PCIe 3.0
alone. These hardware innovations let you group GPUs
together into “hives,” which could further boost perfor-
mance for some configuration scenarios.

The latest ROCm release is designed to exploit the powerful
possibilities of AMD’s advanced GPU-based HPC products,
with built-in switches and optimizations that will bring
this next-generation GPU hardware to its fullest potential.
ROCm 3.0 supports the new 2nd Gen AMD EPYC™ proces-

sor series [10], which comes with up to 64 cores and 128
threads and has broken the barrier on CPU performance
with 100 performance world records [11]. The new ROCm
release also includes support for the Bfloat16 floating-point
math format.

Conclusion
AMD’s ROCm platform is a bold step toward portability and
heterogeneous computing in the HPC space. AMD’s GPU
product line now has an equivalent to the benefits avail-
able with NVIDIA’s GPUs through the CUDA framework,
but ROCm goes a step further by creating a complete lan-
guage- and hardware-independent path for GPU-accelerated
programming. A developer can write the code once and
then compile it for either the CUDA/ NVIDIA or the ROCm/
AMD environment. Upstream Support for ROCm-enabled
GPUs in machine-learning frameworks like TensorFlow and
PyTorch/ Caffe2 ensures immediate relevance for projects
that depend on these tools.

AMD’s vision for a GPU-based, all-open software program-
ming stack is disrupting the whole HPC industry. The open
and modular architecture means other vendors can inte-
grate their own technologies into the ROCm stack, and the
easy path for porting existing languages and frameworks
to ROCm’s neutral format will simplify the learning curve
for programmers who want to stay within their preferred
coding environment. n

Resources

 ROCm:

[1] [rocm. github. io]

[2] [amd. com/ ROCm]

[3] ROCm documentation:

[http:// rocm‑documentation. readthedocs. io/]

[4] HIP: [https:// github. com/ ROCm‑Developer‑Tools/ HIP]

 HPC:

[5] [amd. com/ ROCm/ HPC]

[6] [amd. com/ HPC]

 Machine Learning:

[7] [amd. com/ ROCm/ ML]

[8] MIOpen: [https:// rocmsoftwareplatform. github. io/

 MIOpen/ doc/ html/ index. html]

 Products:

[9] Radeon Instinct GPUs: [amd. com/ INSTINCT]

[10] 2nd Gen EPYC CPUs: [amd. com/ EPYC]

[11] [amd. com/ WorldRecords]

AMD_Discover_ROCm_.indd 1 11/7/19 3:51 PM

https://rocm.github.io/
https://www.amd.com/en/graphics/servers-radeon-instinct-deep-learning
https://rocm-documentation.readthedocs.io/en/latest/
https://github.com/ROCm-Developer-Tools/HIP
https://AMD.com/ROCm/HPC
https://www.amd.com/en/products/servers-hpc-accelerators
https://AMD.com/ROCm/ML
https://rocmsoftwareplatform.github.io/MIOpen/doc/html/index.html
https://www.amd.com/en/graphics/servers-radeon-instinct-mi
https://www.amd.com/en/products/epyc-server?utm_campaign=epyc&utm_medium=redirect&utm_source=301
https://www.amd.com/en/processors/epyc-world-records?utm_campaign=worldrecords&utm_medium=redirect&utm_source=301

