
Computer Sciences
Department:
strategic developments

November 2020 Supercomputing SC’20

Department objectives

Leadership in architectural proposals for HPC
Runtime-aware architecture innovations

Multicore and accelerator architectures in real-time environments
1

Key player in the design of cores and accelerators
European Processor Initiative

New team with solid knowledge on low-level system design

2

Leadership in the evolution and standardization of
parallel programming environments and practices

Inter-operability and resource malleability across different runtime layers

3

Leadership in methodologies and tools for
application/system behaviour understanding

Proof-of-concept and best practices towards improving
applications scalability and performance

4

Key player in the HPC/AI convergence
Novel algorithms, system software and architectural support
Adoption of AI technologies in future simulation frameworks

5

Main research lines

supporting computational
sciences in BSC departments

promoting/driving the
evolution of CS developments

targeting OpenMP, MPI and
accelerator-based models

contributing to the EPI
strategy and the RISC-V

initiative

Computer
architecture and
systems design

Programming and
resource

management
environments

Applications,
benchmarking and

performance
understanding

Artificial
Intelligence

developments and
applications

1 2 5 53 54 5

1

Leadership in architectural proposals for HPC

2
Key player in the design of cores and accelerators

3 Leadership in parallel programming environments and practices
4

Leadership in application performance understanding5

Key player in the HPC/AI convergence

Contributing to Department’s objectives:

Performance tools and
methodologies

For further information please visit

http://tools.bsc.es and https://www.pop-coe.eu

BSC Performance Tools
• Since 1991

• Based on traces

• Open source

• Focus

• Detail, variability, flexibility

• Key factors

• Visual analysis

• Intelligence: Performance Analytics

• Behavioral structure vs. syntactic structure

BSC Tools – what’s new?

Extrae extensions with updated support to OMPT and GASPI instrumentation

Extrae prototypes supporting OpenACC and extending Burst mode to OpenMP

Paraver easy-to-use features (extended hints, sessions management, automatic tutorials download)

Improvements in Paraver timelines (colors management, what-where function line)

Improvements in Paraver tables (columns ordering, independent object selection)

Robust Basic Analysis module with support to MPI+X hybrid codes, burst mode and I/O efficiencies

POP Center of Excellence

 A Centre of Excellence
• On Performance Optimisation and Productivity

• Promoting best practices in parallel programming

 Providing Services since Oct 2015
• Precise understanding of application and system behaviour

• Suggestion/support on how to refactor code in the most
productive way

7

Do not guess about your code performance, measure it with POP

Some POP numbers

 More than 300 free services

8

• 95% of the users satisfied with our work

• Around 5 training events per year

• Close to 100 codes improved with our support

https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

Contact us:

OmpSs-2 and TAMPI

For further information please visit

https://pm.bsc.es/dlb

Data-flow programming model

10

• Advanced dependency system
• in/inout, concurrent, commutative, weak,

multideps, scalar & array reductions

• Optimized for many-core processors
• Scalable scheduler based o a novel Delegation

Lock

• Wait-free dependency system

• Work sharing tasks (task for)

• Good integration with communication and
storage APIs

• TAMPI (MPI)

• TAGASPI (GASPI)

• TASIO (Linux) & TASPDK (Intel SPDK)

• Native integration with Dynamic Load
Balancing (DLB) library

Results of DLB + Prediction Policy

14

• Dynamic Load Balancing
• Allows resource sharing between processes

• Helps react to different sources of imbalance in a transparent manner

• Combine DLB + our prediction-based policy
• When threads are to be idled, their resources are lent to other

processes

• When a phase with high parallelism is detected, resources are acquired
from other processes

Prediction-based Sharing of Resources

13

SC 2020 Release
https://github.com/bsc-pm/ompss-2-releases

11

New features

• New LLVM compiler with support for all OmpSs-2
features expect device)

• New user friendly config file

• Support for NUMA systems: data distribution
policies, locality-aware scheduler and data
tracking system

• Tracing support for kernel and user events

• Enhanced runtime support for hyperthreading

• Enhanced performance for systems with weak
memory models (ARM and Power)

• Array reductions in CUDA

OmpSs-2 NUMA-Aware System

69

#pragma oss task for inout(A[0:1K]) label(blue)
{...}

#pragma oss task for inout(A[0:1K]) label(green)
{...}

#pragma oss task for inout(A[0:1K], A[3K:4K], B[3K:4K]) label(red)
{...}

Directory

A[0-1K] -> NUMA 0

A[1K-2K] -> NUMA 1

A[2K-3K] -> NUMA 2

A[3K-4K] -> NUMA 3

B[0K-1K] -> NUMA 0

B[1K-2K] -> NUMA 1

B[2K-3K] -> NUMA 2

B[3K-4K] -> NUMA 3

...

RQ0

RQ1

RQ2

RQ3

First access, query

Successive accesses, propagation

First access, query

Task Stealing considering
distance and load balance

New unified kernel and user space tracing

• TAMPI makes easier hybrid programming combining OpenMP/OmpSs-2 and MPI

• It can be used on top of any MPI implementation (Intel, MPICH, ParastationMPI, etc)

• Support of blocking, non-blocking on one-sided (WiP) MPI primitives inside tasks

12

CPU CPUCPU CPU

T
5

T
6

T
8

T
4

Running Tasks

T
7

T
2

T
3 T

6
T

8
T

1
T

9

Ready Tasks

 Resume

Pause

TAMPI

MPI
Req

MPI
Req

MPI
Req

ScheduleMPI Blocking

Operation

Polling

Service

Paused Tasks

Z
o

o
m

in
g
…

Block face unpack tasks

Stencil tasks immediately after
unpacks to reuse cache data

No ready tasks… waiting for
data to arrive (TAMPI)

pack
face

unpack
face stencil

intra-proc
comm

isend
face

irecv
face

!Very small tasks

5 timesteps 4 timesteps

5 timesteps 4 timesteps

Initial
refinement

Refinement

M
P

I-
O

n
ly

TA
M

P
I+

O
SS

1.3x

Task-Aware MPI (TAMPI)
https://github.com/bsc-pm/tampi

MiniAMR benchmark

1.49x
w.r.t.

MPI-only

Refinement
impact

Dynamic Load Balancing (DLB)

For further information please visit

https://pm.bsc.es/dlb

• DLB is a dynamic library transversal to the different layers
of the HPC software stack

• Objective: Maximize the utilization of computational
resources inside a node

• DLB offers different levels of integration:
• Transparent to the application
• API for application fine tuning
• API for runtimes and programming models

• Since 2012
• Current stable release DLB 2.1
• Available under LGPLv3
• https://github.com/bsc-pm/dlb.git

 Documentation
 Downloads
 User guide
 Tutorial
 Publications
 Contact

• Load balance hybrid applications
• Redistribute computational resources at shared memory level

• Re-assign computational
resources at runtime
between processes

• API for resource managers
 Prioritize applications
 Allow interactive visualization

• API for applications
 Release resources

• Collect application
performance metrics at

runtime

DLB has three modules independent and compatibles

MPI1 MPI2

Lend

Retrieve

• Application summary of efficiencies
• At finalization and at runtime
• Whole execution and user defined regions

• API for monitoring efficiencies at runtime

OmpSs2 + OpenACC

For further information please contact

antonio.pena@bsc.es

Why OmpSs-2 + OpenACC?

17

Coding
Prod.

Perf.

CUDA

OpenACC

OpenACC + CUDA

OmpSs + CUDA

OmpSs + OpenACC

OmpSs + OpenACC + CUDA #pragma oss task device(openacc) in(…) out(…)

void my_function_kernel(args);

void my_function_kernel(args) {

#pragma acc kernels

…

}

Each function call will become a task

invocation  SO EASY!

18

OmpSs-2 + OpenACC Interoperability
(Currently available as of OmpSs-2 v2.4)

 Combining the programming models:

 The user is expected to use only compute constructs from

the OpenACC model;

 No data transfers clauses

 No async (asynchronous behavior is implied in tasking;

managed automatically by OmpSs-2)

 No executables (initialization, device management)
Compiler Flow

 Hierarchy of Programming Models

 OmpSs-2 task-parallel programming model is combined with

OpenACC data-parallel programming model

 Scientific applications can be broken down to parallel tasks, in turn

those tasks can be suited for data-parallel accelerator execution

 OmpSs-2 runtime can be launching multiple OpenACC regions con-

currently, from independent tasks running on different CPU

threads

Programing Model Hierarchy

Experimental evaluation

 CTE-POWER cluster based on IBM Power9 processors
 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, total 160 threads per node)

 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

 ZPIC: 2D Electromagnetic particle-in-cell (https://github.com/nlg550/ZPIC_OmpSs2)

 Speedup over pure OpenACC version achived by taking advantge of more OmpSs-2 parallel tasks that can be overlaped to hide latency.

 Code complexity remains low, programmers only concentrates on compute construct while OmpSs-2 handles task scheduling and
synchronization

19

T: Threads, R: Compute Region Decomposition, Hybrid: Regions partitioned between CPU and GPU
Note: Regions are assigned to OmpSs-2 task, pure OpenACC can not support this feature

ZPIC Performance Results

OmpSs-2@CPU
(40T/40R)

OmpSs-2@CPU
(40T/160R)

OmpSs-2@Hybrid
OmpSs-2+OpenACC

(1GPU/1R)
OmpSs-2+OpenACC

(1GPU/4R)
OpenACC

(1GPU)

https://github.com/nlg550/ZPIC_OmpSs2

OmpSs@FPGA

For further information please contact

pm.bsc.es

#pragma omp target device(fpga)
#pragma omp task copy_inout([BS]a)

void update_fpga(int *a, int val, size_t BS) {

for (size_t i=0; i<BS; ++i) a[i] += val;

}

void update_blocked(int *a, int val, size_t LEN, size_t BS) {

for (size_t i=0; i<LEN; i+=BS)

update_fpga(a+i, val, BS);

}

int main(...) {

int *a = (int *)malloc(NUM_ELEMENTS*sizeof(int));

update_blocked(a,2020,NUM_ELEMENTS,NUM_ELEMENTS_BLOCK);

#pragma omp taskwait

}

OmpSs@FPGA

 Allows easy programmability (pragma based offload) and
usability (one-click compilation with autoAIT) of FPGAs

eOmpSs@FPGA
 An evolution of OmpSs@FPGA classical offload model distributes the control

among the computing elements embedding a HW runtime in the FPGA

#pragma omp target device(fpga)
#pragma omp task inout([BS]a)
void update_fpga(int *a, int val, size_t BS) {

for (size_t i=0; i<BS; ++i) a[i] += val;
}
#pragma omp target device(fpga)
#pragma omp task inout([LEN]a) inout([LEN/BS]index)
void update_blocked(int *a,int *index,int val,size_t LEN,size_t
BS) {
for (size_t i=0; i<(LEN/BS); i++])

update_fpga(a+BS*index[i], val, BS);
#pragma omp taskwait

}
int main(...) {

int *a = (int *)malloc(NUM_ELEM*sizeof(int));
int *index=(int*)malloc(NUM_ELEM/NUM_ELEM_BLOCK*sizeof(int));
update_blocked(a, index, 2020, NUM_ELEM, NUM_ELEM_BLOCK);
#pragma omp taskwait

}

0

10

20

30

40

50

60

70

Spectra Perform ance

OpenCL (Stratix 10) D is tributed (Alveo U200) D is tributed (ZU9)

G
p

p
s

Improves FPGA Performance over

centralized models

Allows FPGA2FPGA direct

control & communication

N-Body scalability for multiple FPGAs

Picos OmpSs manager
 Tasks and dependences management HW

support for many-core architectures

New improved HW support

Better absolute performance than alternative
software runtimes for existing architectures

Nearly ideal scalability
for future designs

OmpSs@cluster

For further information please contact

paul.carpenter@bsc.es

OmpSs-2@cluster
• OmpSs-2 programming model for distributed memory

• Nanos6 runtime transparently offloads tasks among nodes
• Scheduling, dependencies and data copies handled by the runtime system

• Interoperable with MPI and DLB (dynamic load balancing)

• Common virtual memory layout among all nodes in application MPI rank

T1

T2

T3

T2

T2.0

T2.1

T2.2

T2.2

Task

completed

Task

ready

Task

pending

Dependency

Task offloading

Remote task

finished

Node 1 Node 2 Node 3

Transparent task offloading and data transfers

Common virtual memory layout

OmpSs-2@cluster: advantages
• Ease of programming

• OmpSs-2 task annotations

• Efficient
• Task hierarchies supported using weak dependencies

• Run OmpSs-2 application across multiple nodes

• Cross-node DLB (dynamic load balancing) in MPI+OmpSs-2 application

MPI + OmpSs-2: imbalanced load on two nodes MPI + OmpSs-2@cluster: balanced load on two nodes

Automatic Data Placement for
Heterogeneous Memory Systems

For further information please contact

antonio.pena@bsc.es

Heterogeneous Memory Systems

Bring memories as 1st class citizens Distribute memory objects

D
R

A
M

D
R

A
M

O
p

ta
n

e

SSD
s

O
p

ta
n

e

D
IM

M
s

Methodology (Intel Optane PMem)

Methodology

• LAMMPS
• Keep performance w/ DRAM reduction vs. Memory

Mode @16GB

• Even at 1/4th DRAM size!

• OpenFOAM
• The gain in performance w.r.t. Memory Mode is

higher as simulations get longer

1. Profile

2. Assess optimal distribution

3. Run unmodified binary

Compile
r

Toolchai
n

Memor
y

Profiler

Profile
Analyze

r

Sourc
e

Code

Executabl
e

Object

Executio
n

Input

Runtime
Allocato

r

Profil
e

Data

Object
Distribution

1

2 3

4

5

67

8

Extrae

hmem_advisor
FLEXMALLOC

A. J. Peña and P. Balaji, “Toward the efficient use of multiple
explicitly managed memory subsystems”, IEEE Cluster 2014Evolved version of:

This work is done under the
Intel-BSC Exascale Laboratory

 Evaluate performance of explicitly managed memory

tiers vs. cache-like HW-managed alternatives

 Application-level automatic data placement Framework

– Ecosystem of tools

– Dynamic memory allocation granularity (objects)

– Offline object distribution based on initial profiling

execution

Automatic data placement for heterogeneous memory systems

 Summary of the workflow:

1. Compile application with the flags to generate debugging information. No source code changes are required

2. Profiling execution to collect per-object cache behavior data (e.g. misses , avg. access time, …)

3. Assess the optimal distribution of the different objects among the available memory subsystems

4. Execute with interposition library that automatically places each object to the corresponding memory subsystem

30

Compiler
Toolchain

Extrae
Memory
Profiler

Hmem_advisor
Profile

Analyzer

Source
Code

Executable
Object

Flexmalloc
Runtime
Allocator

Profile
Data

Object
Distribution

4 3

21

Experimental evaluation

 Server with DDR4 + OptaneDC persistent memory DIMMs
– Intel Xeon Platinum 8260L CPU @ 2.30GHz

– Intel software stack (compiler, MPI)

 Data distributions based on different profiling data and several
amounts of DRAM available

– Memory-mode baseline uses 16GB of DRAM as HW-managed cache

 Up to around 2x speedup over baseline for HPCG and MiniFE
– Even using only ¼ of DRAM w.r.t memory-mode

 In other cases we are within negligible performance
improvement/degradation w.r.t memory-mode

31

0

500

1000

1500

2000

2500

Loads (L3) Loads (L3) + Stores
(L1D)

Loads (L3) + Stores (L3*)

Fo
M

 (
z/

s)

Lulesh

4 GB 8 GB 16 GB Cache mode (16 Gb / socket)

0

1000

2000

3000

4000

5000

6000

Loads Loads + Stores (L1) Loads + Stores (L3)

Fo
M

 (
z/

s)

MiniFE

4 GB 8 GB 16 GB Cache mode (16 Gb / socket)

0

1

2

3

4

5

6

7

8

Loads (L3) Loads (L3) + Stores (L1D) Loads (L3) + Stores (L3*)

G
Fl

o
p

s

FlexMalloc configuration

HPCG

4 GB 8 GB 16 GB Cache mode (16 Gb / socket)

OpenMP taskgraph performance

optimization

For further information please contact

eduardo.quinones@bsc.es

void foo() {

#pragma omp parallel

#pragma omp single

{

int a[2];

#pragma omp taskgraph

{

for(int i=0;i<2;i++) {

/*T1*/ #pragma omp task depend(out:a[i])

a[i]=0;

/*T2*/ #pragma omp task depend(in:a[i])

a[i]++;

}

#pragma omp taskwait

}

}

}

OpenMP taskgraph for Performance Optimization

The task-based OpenMP user code is replaced by an optimised execution of the
corresponding Task Dependency Graph (TDG) on the targeted device, i.e., SMP and GPU

void foo() {

#pragma omp parallel

#pragma omp single

{

int a[2];

execute_TDG(a);

}

}

T2.1

T1.1

T2.2

T1.2

TW

TDG representation of the taskgraph region
optimised for OpenMP SMP and CUDA graphs

Benefits

1. The runtime task structure becomes much more lighter,
allowing to exploit finer-grain parallelism

2. The OpenMP TDG representation can be transformed to
other graph-based API, e.g., CUDA graphs, enhancing
programmability

void foo() {

...

// Creation of the kernel node T1.1

cudaGraphNode_t node_T1_1;

cudaKernelNodeParams nodeArgs_T1_1={0};

nodeArgs_T1_1.func = (void ∗) f;
void ∗kernelArgs_T1_1[3] = {&Ah[1]};
nodeArgs_17.kernelParams =(void ∗ ∗) kernelArgs_17 ;

cudaGraphAddKernelNode(&node_17,graph[0],NULL, 0,&nodeArgs_17);

// Creation of the kernel node T2.1

...

}

OpenMP taskgraph for Performance Optimization

Taskgraph GCC ICC LLVM Nanos6

Task granularity (memory workload per task x103)

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

OpenMP taskgraph in SMP

Exploit finer-grain parallelism by reducing:

• Contention on runtime structures
• Overhead of the OpenMP tasking model management

Marenostum 4 node: Two sockets Intel Xeon Platinum 8160 CPU, 24 cores each,
@2.10GHz, 32KB L1 and 1MB L2, private to each socket

SparseLU (on 32 cores)

NVIDIA V100, 16 GB HBM2, CUDA v10.1

Cholesky

OpenMP taskgraph to CUDA graph
• Exploit the define-once-run-repeatedly execution model
• Enhanced programmability:

- +6 lines of code added with OpenMP taskgraph vs.
+15500 lines of code for the CUDA graph definition

Taskgraph OpenMP (IBM compiler)

FTI: Fault Tolerance Interface

For further information please contact

leonardo.bautista@bsc.es

Fault Tolerance Interface (FTI)

Multilevel Checkpointing library
 4 levels of performance / reliability
 Fast Asynchronous Checkpointing
 Transparent Support for GPUs
 IO modes: POSIX, HDF5, MPI-IO
 Support for both N-N and N-1 ckpt.
 Elastic Recovery with less/more ranks
 Differential Dynamic Checkpointing
 Extentions to complement ABFT
 Incremental Checkpointing

File System: Classic Ckpt.
Slowest of all levels.

The most reliable. Power outage.

RS Encoding: Ckpt. Encoding.
Slow for large checkppoints.

Reliable, multiple node crashes.

Partner Copy: Ckpt. Replication.
Fast copy to neighbor node.

It tolerates single node crashes.

Local Storage: SSD, PCM, NVM.
Fastest checkpoint level.

Low reliability, transient failures.

New release! FTI v1.5 “Rabat”:https://github.com/leobago/fti/releases/tag/1.5
Full Documentation: https://fault-tolerance-interface.readthedocs.io/en/latest/

https://github.com/leobago/fti/releases/tag/1.5
https://fault-tolerance-interface.readthedocs.io/en/latest/

Fast Asynchronous

Checkpointing (SC’11)

Fault Tolerance Interface (FTI)

Checkpointing and

Failure Prediction

(IPDPS’13)

Checkpointing and

Power Management

(PMBS’14)

Introspective Analysis

and Checkpointing

(IPDPS’16)

Extentions for ABFT

and partial restart

(FTXS’18)

Differential Dynamic

Checkpointing

(CCGrid’19)

Transparent Support

for GPUs (CCGrid’20)

Elastic Recovery with

less/more ranks

(HiPC’20)*

*(to appear)

Programming with
PyCOMPSs/COMPSs

For further information please visit

compss.bsc.es

• Task-based programming model

• Distributed computing platforms: clusters, clouds, and
container infrastructures

• Docker, Singularity and Mesos

• Python, C/C++, Java interfaces

• Builds a task graph at runtime that express potential
concurrency

• Parallelism and data transfer handled
by runtime

• Support for parallel tasks: MPI,
OpenMP, threads

• Other features: task contraints,
stream data, IO tasks

@task(c=INOUT)

def multiply(a, b, c):

c += a*b

initialize_variables()

for i in range(MSIZE):

for j in range(MSIZE):

for k in range(MSIZE):

multiply (A[i][k], B[k][j],

C[i][j])

compss_barrier()

Programming with PyCOMPSs/COMPSs

Programming with PyCOMPSs/COMPSs

• Good scalability in real problems

• COMPSs version 2.8: New features
• New reduction clause to support user-defined reductions. The runtime

implements a locality aware algorithm that reduces inter-node transfers

• New @container annotation to support tasks deployed in containers

• Other extensions and bug fixing

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 1000 2000 3000 4000 5000 6000 7000

#cores

Execution Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000 7000

cores

SpeedUP

Execution time and speedup of
Multi-Level Monte Carlo algorithm
executed in up to 128 nodes of
MareNostrum 4 (ExaQUte project)

EAR: Energy Aware Runtime

For further information please contact

julita.corbalan@bsc.es

EAR: Energy Aware Runtime

• BSC – Lenovo collaboration project since 2016

The System Software tool for energy optimization, monitoring, control and accounting

Transparent
application
profile and

characterize

Measure
application
signature

Energy
models &

Energy
policy

CPU
frequency
selection

• Power monitoring extensible through plugins. EAR DB
• Flexible and configurable
• Heterogenous cluster support
• Cluster energy limits

EAR
Runtime

Optimization

Node &
cluster

monitoring

Job accounting

Control

Energy management
framework

Loops detected on
the fly

Performance and power
metrics

Dynamic

• 100% Transparent to users and Runtime optimization
• Neither user input nor historic information
• Energy models and policies as plugins
• SLURM plugin for Job submission. Intel MPI and OpenMPI

EAR runtime

• BSC Contact: Julita Corbalan – BSC (julita.corbalan@bsc.es)

• Operational since August 2019 at LRZ on SuperMUC NG 6480 nodes system

• Open Source & Licence: BSD-3 license for individual/non-commercial use . EPL-1.0 license for
commercial use

• Download: https://gitlab.bsc.es/ear_team/ear/-/tree/EAR_3.3

• Professional services through EAS BSC-UPC spin-off: www.eas4dc.com

• What’s next: NVIDIA and AMD support. Powercap.

More info…

14%
15%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Energy savings Power saving Performance penalty

POP: Performance vs 2.4GHz

10%

12%

3%

0%

2%

4%

6%

8%

10%

12%

14%

Energy saving Power saving Performance panlty

GROMACS: Performance vs 2.4GHz

12%
11%

7%

2%

12%

8% 8%

3%

0%

2%

4%

6%

8%

10%

12%

14%

BT-MZ.D GROMACS DUMSES OpenIFS POP AFiD SUSPENSE BQCD

GFlops/Watt increment vs 2.4GHz

Energy
efficiency

Energy
savings
with no
effort

10% of improvement in energy efficiency

EAR: Energy Aware Runtime

mailto:julita.corbalan@bsc.es
https://gitlab.bsc.es/ear_team/ear/-/tree/EAR_3.3
http://www.eas4dc.com/

DISLIB: machine learning library on
top of PyCOMPSs

For further information please visit

dislib.bsc.es

Dislib: parallel machine learning

dislib: Collection of machine learning algorithms
developed on top of PyCOMPSs

• Unified interface, inspired in scikit-learn (fit-predict)

• Based on a distributed data structure (ds-array)

• Unified data acquisition methods

• Parallelism transparent to the user –
PyCOMPSs parallelism hidden

• Open source, available to the community

Provides multiple methods:
• data initialization

• Clustering

• Classification

• Model selection, ...

Dislib: parallel machine learning
• Good scalability in cluster execution. For very large sizes, dislib can obtain results while

competitors fail to finish the execution

• Dislib version 0.6.0: new features
• New methods: Multivariate linear regression, SVD (Singular Value Decomposition), PCA using SVD,

ADMM Lasso, Daura clustering
• New ds-array operators, matmul, kronecker product and rechunk methods for of ds-arrays
• Other improvements and bug-fixing

Kmeans:
500 million samples
100 features

Kmeans:
2 billion samples
100 features

Numerical libraries using OmpSs

For further information please contact

marc.casas@bsc.es

Numerical Libraries:
Simple and efficient parallel codes

◼ Dense Linear Algebra: Our code
transformations leverage data locality
while keeping code simplicity.

◼ Sparse Linear Algebra: We leverage
advanced parallel constructs to express
sparsity-driven dependencies.

Numerical Libraries:
Simple and efficient parallel codes

◼ We implement flexible schemes to dynamically control the amount of concurrency taking into account
parallel workloads features.

Multi-level Simulation Approach
(MUSA)

For further information please contact

marc.casas@bsc.es

Multi-level Simulation Approach (MUSA)

 Trace driven

• High-level Trace

 MPI events

 OpenMP/OmpSs runtime system activity

• Dynamic Instructions Trace

 x86, Arm, RISC-V

 Simulation

• MPI activity is simulated using the DIMEMAS model

• Computation phases are simulated considering both

 OpenMP/OmpSs runtime system activity

 Shared-memory multi-core architecture

• Simulation Speed: ~10MIPS, 100 times faster than gem5

Architecture
Component

Architecture Parameters
Application Performance

Analysis per HW Component
Fine-grain Application
Performance Analysis

Vector
Processing Unit

(VPU)

Processing unit frequency
Vector Unit Throughput

Vector Register Size
Vector Register File Size

Instruction Vectorization
Stalled Cycles at the VPU Level
Consumed Power at the VPU

Execution Time

Power Consumption

Data Movement

Memory Access Pattern

Data Reuse

Cache Hierarchy

of Cache Levels
Cache Storage Capacity

Cache Associativity
Cache Line Size

Cache Replacement and
Promotion

Hit/Miss Ratios
Data Reuse at the Cache

Write Backs
Consumed Power per Cache

Main Memory
Memory Bandwidth

of in-flight requests
Memory Controller

Memory Bandwidth
Congestion

of in-flight requests
Consumed Power at MM

Fro
m

 V
P

U
 to

 M
e

m
o

ry

From Coarse- to Fine-Grain
Performance Analysis

From HW to SW

Architecture
Component

Architecture Parameters
Application Performance

Analysis per HW Component
Coarse-grain Application

Performance Analysis

Vector
Processing Unit

(VPU)

Processing unit frequency
Vector Unit Throughput

Vector Register Size
Vector Register File Size

Instruction Vectorization
Stalled Cycles at the VPU Level
Consumed Power at the VPU

Execution Time

Power Consumption

Data Movement

Memory Access Pattern

Data Reuse

Cache Hierarchy

of Cache Levels
Cache Storage Capacity

Cache Associativity
Cache Line Size

Cache Replacement and
Promotion

Hit/Miss Ratios
Data Reuse at the Cache

Write Backs
Consumed Power per Cache

Main Memory
Memory Bandwidth

of in-flight requests
Memory Controller

Memory Bandwidth
Congestion

of in-flight requests
Consumed Power at MM

From HW to SW

PROFiling-based EsTimation of
performance and energy

For further information please contact

petar.radojkovic@bsc.es

PROFET: PROFiling-based EsTimation of performance and energy

Seamless Emulation of Reduced
Precision (SERP)

For further information please contact

marc.casas@bsc.es

Seamless Emulation of Reduced Precision (SERP)

 SERP: A binary analysis tool based on PIN to instrument and analyze scientific
workloads.

• SERP intercepts all instructions executed by these frameworks.

• SERP rounds the operands of some Floating-Point32 (FP32) instructions to BFloat16 (BF16)
using the Rounding to Nearest Even (RNE) algorithm.

• The cost of operands rounding is reduced by:

 using vectorization intrinsics.

 avoid redundant rounding of instructions of the same Basic Block.

𝐷 = 𝐴 · 𝐵 + 𝐶

FP32

BF16

SERP allows precise accuracy analysis

 SERP enables the analysis of reduced-precision formats (E.g. BFloat16) on relevant
workloads like DNN training.

 SERP can be easily combined with PIN-based tools like Sniper to provide performance
estimations.

Instruction Breakdown Static Techniques on ResNet-50 Static Techniques on seq2seq

High-resolution Deep Learning

For further information please contact

dario.garcia@bsc.es

High-resolution Deep Learning

61

● High-Resolution (HR) image processing is a matter of life and death (medical

imaging, autonomous driving, etc.)

● Variable-Shaped (VS) image processing is how real world data works (each

device generates images at different resolution and aspect ratio)

● Current DL Software is inadequate (tensor size limits, batch size limitations,

batch normalization inconsistencies, excessive padding, etc.)

● Current DL Hardware is inadequate (limited GPU memories, poor CPU

efficiency, benchmarks based on low-resolution tasks, etc.)

Insights into HR-VS Deep Learning

 We need a SW benchmark to assess methods

● MAMe dataset (37K HR-VS artwork images)

● https://hpai.bsc.es/MAMe-dataset/

● Baseline results: HR > LR

 We need a HW benchmark to assess performance

● Low res. vs Mid. res. vs High res.

● Memory needs vary up to 40% among batches

● Num. instructions goes down with padding

● Some architectures do best in HR, some in LR

● Benchmark to be released soon

62

y axis: Memory x axis: batches

y axis:
#Instr.

x axis:

padding

Blockchain research

For further information please contact

leonardo.bautista@bsc.es

Blockchain Research - ETH2 Monitor

 Ethereum 2.0 – Sharding

 Testing network robustness

 Monitoring clients in testnet

 Chain Data analytics

 Blockchain Simulations

www.bsc.es

