%&% @ University of Tsukuba | Center for Computational Sciences

Numerical Computation

D Implementation of Parallel 3-D Real FFT with 2-D Decomposition on Intel Xeon Phi Clusters

Background

The fast Fourier transform (FFT) is an algorithm which is currently widely used in science and engineering. A typical
decomposition for performing a parallel 3-D FFT is slabwise. This becomes an issue with very large MPI process counts
for a massively parallel cluster of many-core processors.

Overview

We proposed an implementation of a parallel 3-D real FFT with 2-D decomposition on Intel Xeon Phi clusters. The
proposed implementation of the parallel 3-D real FFT is based on the conjugate symmetry property of the discrete
Fourier transform (DFT) and the row-column FFT algorithm. We vectorized FFT kernels using the Intel Advanced Vector
Extensions 512 (intel AVX-512) instructions.

Performance

1000

To evaluate the implemented 3-D real FFT with 2-D {00

decomposition, referred to as FFTE 7.0 (2-D 2
decomposition), we compared its performance with &
that of the FFTE 7.0 (1-D decomposition), the FFTW 10
3.3.8 and the P3DFFT 2.7.7. The performance results
demonstrate that the proposed implementation of 1
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
paraIIeI 3-D real FFT with 2-D decomposition Number of MPI processes
effectively improves performance by reducing the ~—FFTE 7.0 with 1-D decomposition——FFTE 7.0 with 2-D decomposition
communication time for larger numbers of MPI TP S.S8 DR
processes on Intel Xeon Phi clusters. Fig. 1: Performance of Parallel 3-D Real FFTs (N =256 X 512 X 512)

) Development of the high accurate Block Krylov solver

Linear systems with multiple right-hand sides appear in many scientific applications such as the computation of physical
quantity in lattice Quantum Chromodynamics (QCD), inner problems of eigensolvers for sparse matrix, and so on. As
numerical methods for solving these linear systems, it is known that Block Krylov subspace methods are efficient
methods in terms of the number of iterations and the computation time. However, the accuracy of the obtained solution
may often deteriorate due to the error occurs in the computation of matrix-matrix multiplications. To improve the
accuracy of the obtained solution, we have developed the new Block Krylov subspace method named Block GWBICGSTAB
method [1]. The Block GWBICGSTAB method is based on the group-wise updating technique. By using this technique, the
matrix-matrix multiplications that cause accuracy degradation can be avoided. As shown in Fig. 1, the accuracy of the
obtained solution generated by the Block GWBICGSTAB method is higher than that by other methods.

Block BIiCGSTABrQ
Block BICGGRrQ B
Block GWBICGSTABrQ (s=1)
Block GWBICGSTABrQ (s =50) —

orNe

10-10

10-12 i ~

10-14

MM Fig. 2: True relative residual norm as a function of the

1 16 | | number L of right-hand sides. The test problem is the
0 0 20 40 60 S0 100 linear system derived from the lattice QCD calculation.

: : Problem size: 1,572,864.
Number of right-hand sides, L

[1] Hiroto Tadano and Ryosei Kuramoto, Accuracy improvement of the Block BICGSTAB method for linear systems with multiple right-
hands sides by group-wise updating technique, J. Adv. Simulat. Sci. Eng., Vol. 6, No. 1, pp. 100—117, 20109.

contact address: pr@ccs.tsukuba.ac.jp https://www.ccs.tsukuba.ac.jp/

University of Tsukuba | Center for Computational Sciences

Software Researches for Big Data and Extreme-Scale Computing

' Gfarm/BB — Gfarm File System for Node-local . Accelerating Python Applications with
burst buffer Persistent Memory

http://oss-tsukuba.org/en/software/gfarm Python is one of the most popular general-purpose programming

300 languages, and persistent memory (PMEM) is a new device which can
< 250 Cfarm /BB read accelerate data-intensive computing. There is a strong demand to use
8 W / persistent memory from Python easily. Therefore, we focus on pmemky,

200 . which is a key-value store optimized for persistent memory, and its

150 Gfarm/BB write python bindings. We are currently evaluating pmemkv’s python

100 bindings in detail for efficient use of PMEM in Python.

50 BeeOND read/write
0 Registers Application
Caches

0 10 20 30 40 50 60 70
DRAM

nodes

Fig. 1: IOR file-per-process read/write performance on Cygnus supercomputer 5SD

Key-value Library

Aduajeq

Direct Access

gfarmbb —h hostfile —m mount_point start HDD

Capacity

values

gfarmbb —h hostfile stop

. Persistent Memory
Features include

*Open source

*Exploit local storage and data locality for scalable I/0O performance
*InfiniBand support

e Data integrity is supported for silent data corruption

*Production systems: 8PB JLDG, 100PB HPCI Storage, etc.

Fig.2a: Memory-storage hierarchy

,) Fig2b: Applications can directly access
with persistent memory

the persistent memory resident data
structures without using buffers.

. Investigate DAOS architecture for metadata ' Research of caching file system to exploit node

operation local storages

Compute nodes

4500

4000 .
Node private burst buffer
3500
3000
2500
2000
1500
Storage nodes
1000
500 II I Fig. 4: Automation of construction/destruction a swarm cluster
0 -
: B

kKIOPS

. The performance gap between processors and disk-based storage is

,\e&e & < growing in modern HPC systems. To reduce the gap, SSDs attached to
& &“b & compute nodes has been used as a “node local burst buffer”. We are
mdtest implementing distributed file system that uses local SSDs as a caching

MGekkoFS Mluster M WekalO Matrix " DAOS layer of the storage nodes. The system uses fuse-library for system

call replacing and mochi-framework for RPC data transfer.
Fig. 3: mdtest performance comparison of 10-500 10 node challenge scores

' Acceleration of Deep Learning using pytorch

The open-source DAOS — Distributed Asynchronous Object Storage

— is notable for its rank on the 10-500 list and its use of Intel® with persistent memory

Optane™ Persistent Memory. In particular, metadata performance Persistent memory offers greater capacity than DRAM and significantly
is remarkable compared to other systems. better performance than storage. We use it for deep learning with
We investigate the reason for DAOS remarkable metadata pytorch. Usually, before performing deep learning using the GPU, the
performance on its architecture and consider to integrate DAOS training data is copied to the main memory from the storage. We
ways to an existing system or develop a new storage system with exploit the persistent memory to improve the performance.

persistent memory.

Acknowledgment
This work is partially supported by Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, New Energy and Industrial
Technology Development Organization (NEDO), and Fujitsu Laboratories Ltd.

contact address: pr@ccs.tsukuba.ac.jp https://www.ccs.tsukuba.ac.jp/

