

Panasas PanFS 8:
Architectural Overview
WHITE PAPER

WHITE PAPER

2Panasas PanFS 8: Architectural Overview

Table of Contents

Executive Summary …………………………………… 3

The PanFS Architecture: The Preeminent
HPC Storage Architecture ………………………… 4

 • Separation of Control and Data Planes ………… 4

 • Linear Scale-Out of Director and

Storage Nodes …………………………………………………… 5

 • Parallel and Direct Transfers from the Client … 5

 • File Maps, Parallelism, and Erasure Coding … 5

 • Full POSIX Semantics with Cache Coherency … 6

 • Data Management: Volumes, ACLs,

Snapshots, Quotas, and Encryption ……………… 6

 • Remarkable Mixed Workload Performance … 6

 • NFS and SMB Gateway on Director Nodes … 6

Let’s Dive Deeper ……………………………………… 7

 • BladeSets and Three Generations

of Storage Nodes ……………………………………………… 7

 • Director Nodes, the Repset,

and the President ……………………………………………… 7

 • Director Software and Deeply Automated

Failure Recovery ………………………………………………… 7

 • Storage Nodes are Object Storage Devices … 8

 • Each File Is Individually Erasure Coded

for Maximum Reliability …………………………………… 8

 • Reliability That Increases with Scale ……………… 9

 • An Architecture of Even More Reliability …… 9

 • Preventing Hot Spots …………………………………… 10

 • Consistent Mixed Workload Performance …… 12

 • The Most Performance Efficient

HPC File System ………………………………………………… 13

 • Single-Tier Storage Nodes Versus

External Tiering ………………………………………………… 13

Conclusion – PanFS is the Most Adaptive
and Consistent High-Performance Storage
System Supporting the Diverse and
Changing Workflows in HPC and AI ………… 15

WHITE PAPER

3Panasas PanFS 8: Architectural Overview

Executive Summary
HPC environments, by their very nature, tend to be large and are usually quite complex.

Whether it’s pushing the boundaries in life and physical sciences or supporting reliable

engineering, it takes many compute nodes operating together to analyze or simulate the

problems at hand. The quantity of data required, and the access performance to keep

all those compute nodes busy, can only be met by a true parallel file system, one that

maximizes the efficiency all storage media in a seamless, total-performance storage system.

The PanFS® parallel file system delivers the highest performance among competitive HPC

storage systems at any capacity, and takes the complexity and unreliability of typical

high-performance computing (HPC) storage systems off your hands, and it does so using

commodity hardware at competitive price points.

PanFS orchestrates multiple storage servers into a single entity that serves your data to

your compute cluster. Through sophisticated software, multiple storage servers that each

have HDDs and/or SSDs attached to them will work together to support hundreds of

Gigabytes per second (GB/s) of data being read and written by your HPC applications.

PanFS manages this orchestration without manual intervention, automatically recovering

from any failures and continuously balancing both the load across those storage servers and

scrubbing the stored data for the highest levels of data protection.

PanFS was the first storage system designed with the parallel file system architecture

that is the de facto dominant storage architecture in HPC systems to this day. While the

foundation for PanFS was laid over 20 years ago, the file system continues to adopt the

latest technology advancements to provide the exceptionally high performance, reliability

and low-touch administration our customers have come to expect and rely upon.

In this document, we’re going to take a “breadth-first” tour of the architecture of PanFS,

looking at its key components then diving deep into the main benefits.

WHITE PAPER

4Panasas PanFS 8: Architectural Overview

Figure 1 – The PanFS Parallel File System

There are three components working together to

power the PanFS file system: Director Nodes, Storage

Nodes, and the DirectFlow® Client driver. The Director

Nodes and Storage Nodes are computer systems

dedicated to running PanFS software, and together

they form the Panasas ActiveStor® appliance. The

DirectFlow Client driver is a loadable software module

that runs on Linux compute servers (“Clients”)

and interacts with the Director Nodes and Storage

Nodes to read and write the files stored by PanFS.

Any required administration happens via the GUI or

CLI running on a Director Node. There’s no need to

interact with Storage Nodes or the DirectFlow Client

driver – the Directors take care of that.

All the Director Nodes and Storage Nodes that

provide a single file system image are called a

“realm”. All the Linux compute servers running

DirectFlow Clients that access a realm are not

considered part of that realm, instead they are

considered Clients.

Separation of Control and
Data Planes
PanFS explicitly separates the “control plane” from

the “data plane”:

• Director Nodes in PanFS are the core of the

control plane. They process file system metadata

(e.g.: directories, file attributes, etc.), coordinate

the actions of the Storage Nodes and the

DirectFlow Client drivers for file accesses, manage

membership and status within the PanFS storage

cluster, and control all failure recovery and data

reliability operations. Director Nodes are simple,

commodity compute servers with a high-speed

networking connection, significant DRAM capacity,

and an NVDIMM memory for transaction logs.

• Storage Nodes in PanFS are the core of the

data plane. They are the only part of the overall

architecture that stores data or metadata. While

Director Nodes serve and modify file system

metadata, they don’t store it. Storage Nodes are

commodity systems, but they are models we’ve

chosen for their carefully balanced hardware

architecture in terms of the HDD, SSD, NVMe, and

DRAM capacities, strength of CPU, networking

bandwidth, etc.

• The DirectFlow Client driver is a loadable file

system implementation installed on compute

servers and used by your application programs

like any other file system. It works with the

Director Nodes and Storage Nodes to deliver

fully POSIX-compliant file system behavior,

from a single namespace, across all the servers

in the compute cluster. All the popular Linux

distributions and versions are supported.

CLIENT SYSTEMS

PanFS Parallel File System

DATA STORAGE NODES METADATA
DIRECTOR NODES

The PanFS Architecture:
The Preeminent HPC Storage Architecture

WHITE PAPER

5Panasas PanFS 8: Architectural Overview

Linear Scale-Out of Director and
Storage Nodes
PanFS scales out both Director Nodes and Storage

Nodes. For more metadata processing performance,

more Director Nodes can be added. For more

capacity or more storage performance, more Storage

Nodes can be added.

In scale-out storage systems like PanFS, there

simply is no maximum performance or maximum

capacity. To achieve more performance or more

capacity, simply add a few more nodes. PanFS has

been architected to provide linear scale-out; adding

50% more Storage Nodes will deliver 50% more

performance in addition to 50% more capacity.

One PanFS customer gradually added

over 1,500 Storage Nodes and 150 Director

Nodes to a single PanFS realm over a period

of several years and saw linear growth in

performance every step of the way. This was

done while supporting a user community of

several thousand researchers, all running their

own HPC applications at the same time.

Parallel and Direct Transfers
from the Client
PanFS is a parallel file system that can consistently

deliver orders of magnitude more bandwidth than

the standard NFS and CIFS/SMB protocols. Each file

stored by PanFS is individually striped across many

Storage Nodes, allowing each component piece of a

file to be read and written in parallel, increasing the

performance of accessing each file.

PanFS is also a direct file system that allows the

compute server to talk over the network directly to

all the Storage Nodes. Typical Enterprise products

will funnel file accesses through “head nodes”

running NFS or CIFS/SMB and then across a backend

network to other nodes that contain the HDDs or

SSDs that hold the file. Obviously, that can create

bottlenecks when data traffic piles up on the head

nodes, plus it brings additional costs for a separate

backend network. In contrast, for each file that the

application wants to access, the DirectFlow Client on

the compute server will talk over the network directly

to all the Storage Nodes that hold that file’s data.

The Director Nodes are out-of-band, which makes for

a much more efficient architecture and one that is

much less prone to hotspots, bottlenecks, and erratic

performance common to Scale-Out NAS systems.

Figure 2 – Parallel and Direct Transfers

File Maps, Parallelism,
and Erasure Coding
PanFS makes use of the multiple Storage Nodes by

assigning a map to each file that shows where all the

striped component parts of that file can be found,

which Storage Node holds each part. The DirectFlow

Client uses that map to know which Storage Nodes

to access, directly as well as in parallel.

PanFS also uses Network Erasure Coding as part

of that striping to ensure the highest levels of data

integrity and reliability.

DirectFlow Parallel Access

ActiveStor Ultra Storage Nodes

OSD OSD OSD OSD OSD OSD

Clients

NFS &
SMB

Out-of-band
Metadata

ActiveStor
Directors

Clients
DirectFlow Client

WHITE PAPER

6Panasas PanFS 8: Architectural Overview

Full POSIX Semantics with
Cache Coherency
The POSIX Standard defines the semantics of modern

file systems. It defines what a file is and what a

directory is, what attributes each has, and the open,

close, read, write, and lseek operations used to access

files. Billions of lines of software have been written

that leverage the POSIX standard for access to storage.

The DirectFlow Client provides the same semantics as

a locally-mounted, POSIX-compliant file system, with

the assurance that if some other process (on another

compute server) is writing to a file at the same time

this process is reading from it, this process will not

read stale data. In file system terminology, PanFS has

been engineered to provide cache coherency across

all the nodes running the DirectFlow Client.

All the processes running on all the compute

servers will see the same file system

namespace, metadata, and user file data

contents, all the time.

Data Management: Volumes, ACLs,
Snapshots, Quotas, and Encryption
At least one Volume must be created at the root

of the PanFS file system namespace, but multiple

Volumes are recommended. While each Volume is a

separate unit of administrative control, they all share

the capacity of the realm. For example, each Volume

could have a different set of per-user quota values

or snapshot schedule. Each Volume is just a normal

directory tree in the PanFS namespace, except

that hardlinks that cross between one Volume and

another are not supported.

PanFS also supports Access Control Lists (ACLs) on

each file and directory in addition to the traditional

Linux-style mode bits such as -rwxr-xr-x. They

provide much finer grained control over which user

accounts can execute which operations on each

file or directory than the mode bits do. Per-Volume

snapshots are a convenient way to enable user-

directed recovery of prior versions of files, with no

system administrator involvement required. Data

at Rest Encryption (DARE) is supported as well,

ensuring that the data on the system remains private.

Remarkable Mixed Workload
Performance
The PanFS architecture not only delivers

exceptionally high but also very consistent

performance for workloads that include a wide range

of file sizes and access patterns and workloads that

change significantly over time.

The effect is a dramatic broadening of the use cases

that PanFS can support in an HPC environment

compared to other parallel file systems. All other

parallel file systems require time consuming and

laborious tuning and retuning as workloads change.

PanFS has a wide performance profile

that supports a range small files and very

randomized workloads such as might be found

in genomics or in hosting home directories, in

addition to the core HPC large file workloads.

NFS and SMB Gateway on
Director Nodes
One of the roles of the Director Nodes in PanFS is

to act as gateways that translate NFS and SMB/

CIFS operations into DirectFlow operations, allowing

clients such as laptops and workstations to access

the same namespace and data as the HPC compute

cluster does. PanFS provides high performance NFS

and SMB/CIFS access, but as a result of its parallel

and direct nature, the DirectFlow Protocol will always

be the highest performance path to PanFS storage.

WHITE PAPER

7Panasas PanFS 8: Architectural Overview

Let’s Dive Deeper

BladeSets and Three Generations
of Storage Nodes
PanFS can be configured to create what we call a

“BladeSet” for different classes of Storage Nodes.

For example, Storage Nodes with a capacity of 28TB

each should not be combined into the same BladeSet

as Storage Nodes with a capacity of 116TB each.

This helps to evenly spread the workload across

the pool of Storage Nodes and avoid hotspots.

PanFS can support multiple BladeSets in a realm

and in the same namespace at the same time. Any

given Volume can only draw capacity from a single

BladeSet.

A typical reason to have different classes of Storage

Nodes in a realm is as a result of expanding a realm

over time by adding the latest generation Storage

Nodes each time. The latest Storage Nodes might

need to be in a different BladeSet if they are different

enough from the other Storage Nodes in the

realm. Adding Storage Nodes, whether in the same

BladeSet or a new one, is a non-disruptive operation

performed while the file system is online.

Director Nodes, the Repset,
and the President
Any realm needs a minimum of three Director Nodes.

The administrator should designate three or five

Director Nodes out of the total set of Director Nodes

in the realm to be the rulers of the realm. Each of

those rulers will have an up-to-date, fully replicated

copy of the configuration database for the realm,

which is why the group of rulers is called the repset.

Those rulers will elect one of themselves to be the

President who will coordinate all the configuration,

status, and failure recovery operations for the

realm. If the Director Node currently designated the

President were to fail, another member of the repset

would be immediately and automatically elected to

be the new President. The configuration database is

kept up to date on all members of the repset via a

distributed transaction mechanism.

Director Nodes make themselves available to do any

of a large set of operational and maintenance tasks

the President may need them to do. Those include

managing a number of Volumes, being a gateway

into PanFS for the NFS and/or SMB/CIFS protocols,

helping perform background scrubbing of user

data, helping to recover from a failure of a Storage

Node, and helping to perform Automatic Capacity

Balancing across the pool of Storage Nodes, among

others. The President’s decisions can change over

time as circumstances change; for example: moving

a gateway or a Volume to a different Director Node.

However, the President will only do that if the

operation is fully transparent to client systems.

Director Software and Deeply
Automated Failure Recovery
In addition to the other responsibilities Director

Nodes have managing the POSIX semantics and

cache coherency of the files in the file system,

they also need to manage the status and health of

each of the Storage and Director Nodes that are

part of the realm. Panasas has analyzed the failure

modes of each of the commodity platforms that

PanFS has been ported to and we have included

recovery logic for each of those cases into the

Director Node software stack. That additional

engineering work is a significant contributor to

the overall reliability of a PanFS realm and is one

of the keys to its low-touch administration. PanFS

automatically reacts to failures and recovers from

them, in effect taking care of itself.

WHITE PAPER

8Panasas PanFS 8: Architectural Overview

This is why we refer to PanFS as being a portable file

system rather than being Software Defined Storage

(SDS). Panasas does the qualification and integration

work for new platforms, and codes in optimal

recovery logic for each platform. With SDS, the end

customer does the integration during the installation

of the SDS package and must take responsibility

for fixing things if something goes wrong. We

believe that the file system is our responsibility, not

the customer’s, and that file system reliability is

paramount.

We have customers who have had zero

unplanned downtime over the life of their

PanFS realm.

Storage Nodes are Object Storage
Devices
Storage Nodes in PanFS are actually highly

sophisticated Object Storage Devices (OSDs) and

we gain the same scale-out and shared-nothing

architectural benefits from our OSDs as any Object

Store would. The definition of an Object used in

our OSDs comes from the Small Computer System

Interface (SCSI) standard definition of Objects rather

than the Amazon S3 definition of Objects.

Each File Is Individually Erasure
Coded for Maximum Reliability

Figure 3 – Per-File Erasure Coding Across OSDs

PanFS uses Objects to store POSIX files, but it

does so in a different way from how S3 Objects

are typically used to store files. Instead of storing

each file in an Object, PanFS stripes a large POSIX

file across a set of “Component Objects” and adds

additional Component Objects into that stripe that

store the “P” and “Q” data protection values of N+2

erasure coding. Using multiple Objects per POSIX

file enables the striping of a file that is one of the

sources of a parallel file system’s performance.

While large POSIX files are stored using erasure

coding across multiple Component Objects, small

POSIX files use triple-replication across three

Component Objects. That approach delivers higher

performance than what can be achieved by using

erasure coding on such small files and makes it more

space efficient as well. Unless the first write to a file

is a large one, it will start as a small file. If a small file

grows into a large file, at the point that the erasure

coded format becomes more efficient, the Director

Node will transparently transition the file to the

erasure coded format.

ActiveStor Ultra Storage Nodes

OSD OSD OSD OSD OSD OSD OSD OSD

Each Component stored as an Object
on a randomly chosen OSD

File
Data

…

Each File Erasure Coded

1 2 3 4 5 P QN

WHITE PAPER

9Panasas PanFS 8: Architectural Overview

When a file is created and as it grows into a large file,

the Director Node that is managing those operations

will randomly assign each of the individual

Component Objects that make up that file to

different Storage Nodes. No two Component Objects

for any file will be in the same failure domain.

The Storage Nodes for any given file are not selected

completely randomly, however. The selection process

does consider the current capacity utilization of

each Storage Node in order to keep the capacity

and bandwidth of the pool of Storage Nodes

balanced. We call that Passive Capacity Balancing to

differentiate it from Active Capacity Balancing.

Reliability That Increases with
Scale
Any system can experience failures and as systems

grow larger, their increasing complexity typically

leads to lower overall reliability. For example, in an

old-school RAID subsystem, since the odds of any

given HDD failing are roughly the same during the

current hour as they were during the prior hour,

more time in degraded mode equals higher odds

of another HDD failing while the RAID subsystem is

still in degraded mode. If enough HDDs were to be

in failed state at the same time there would be data

loss, so recovering back to full data protection levels

as quickly as possible becomes the key aspect of any

resiliency plan.

If a Panasas Storage Node were to fail, PanFS would

reconstruct only those Component Objects that

were on the Storage Node that failed, not the entire

raw capacity of the Storage Node like a RAID array

would. PanFS would read the Component Objects for

each affected file from all the other Storage Nodes

and use each file’s erasure code to reconstruct the

Component Objects that were on the failed Node.

A RAID array reconstructs the contents of

drives while PanFS reconstructs the contents

of files.

When a BladeSet in PanFS is first set up, it sets aside

a configurable amount of spare space on all the

Storage Nodes in that BladeSet for reconstructions.

When PanFS reconstructs the missing Component

Objects, it writes them to the spare space on

randomly chosen Storage Nodes in the same

BladeSet. As a result, during a reconstruction,

PanFS uses the combined write bandwidth of all the

Storage Nodes in that BladeSet.

PanFS has linear scale-out reconstruction

performance in the event of a Storage Node

failure, dramatically reducing recovery times,

so PanFS reliability goes up with scale.

PanFS also continuously scrubs the data integrity

of the system in the background by slowly reading

through all the files in the system, validating that the

erasure codes for each file match the data in that file.

Data scrubbing is a hallmark of Enterprise

class storage systems and is only found in one

HPC class storage system, PanFS.

An Architecture of Even More
Reliability
The N+2 erasure coding that PanFS implements

protects against two simultaneous failures within

any given BladeSet without any data loss. More than

two failures in a realm can be automatically and

transparently recovered from as long as there are no

more than two failed Storage Nodes at any one time

in any given BladeSet.

WHITE PAPER

10Panasas PanFS 8: Architectural Overview

If in extreme circumstances three Storage Nodes in a

single BladeSet were to fail at the same time, PanFS

has one additional line of defense that would limit

the effects of that failure. All directories in PanFS are

stored quad-replicated (four complete copies of each

directory, no two copies on the same Storage Node)

rather than the triple-replicated or erasure coded

formats used for regular files.

If a third Storage Node were to fail in a BladeSet

while two others were being reconstructed, that

BladeSet would immediately transition to read-only

as a result. Only the files in that BladeSet that had

Component Objects on all three of the failed Storage

Nodes would have lost data, a smaller and smaller

percentage as the size of the BladeSet increases. All

the other files in the BladeSet would be unaffected

or recoverable using their erasure coding.

Figure 4 – Distributing File Contents Across
OSDs Spreads Out Hotspots, Intensity of Color
Shows Intensity of I/O Load

Since PanFS would have one complete directory tree

still available to it, it can identify the full pathnames

of precisely which files need to be restored from

a backup or copied in from their original source,

and can therefore also recognize which files were

either unaffected or recovered using their erasure

coding. PanFS is unique in the way it provides

clear knowledge of the impact of a given event, as

opposed to other architectures which leave you with

significant uncertainty about the extent of the data

loss.

PanFS has a much more intelligent, graceful

failure model that we call “Extended File

System Availability” compared to all-or-

nothing architectures.

Preventing Hot Spots

The random assignment of Component Objects to

Storage Nodes spreads the load from any hot files

across those Nodes. In most PanFS installations the

number of Storage Nodes is much larger than the

typical stripe width of a file, so each hot file is very

likely to only share a few Storage Nodes with any other

hot files.

OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD OSD

File
1

I/O Load
Higher
Higher
Higher
Very Low

File
3

File
4

File
2

WHITE PAPER

11Panasas PanFS 8: Architectural Overview

That greatly reduces the odds of any one Storage

Node becoming overloaded and impacting the

performance of the whole realm. The result is much

more consistent system performance, no matter what

workload is being requested by the compute servers

or how it changes over time, and PanFS does so

without any tuning or manual intervention.

No “hotspots” means that all the Storage Nodes

are evenly loaded, they are all contributing

equally to the performance of the realm.

Since scalable performance depends upon spreading

all the files relatively evenly across the pool of

Storage Nodes, PanFS includes both Passive Capacity

Balancing and Active Capacity Balancing. In Passive

Capacity Balancing, when new files are created,

we apply a slight bias when assigning the new

Component Objects to Storage Nodes by placing

slightly more Component Objects onto Storage Nodes

that have somewhat lower utilization. Over time, that

tends to keep the Storage Nodes equalized.

If Passive Capacity Balancing is insufficient, for

example if many files are deleted at once and

the balance is now off by more than a threshold,

PanFS also includes Active Capacity Balancing. The

President will ask the pool of Directors to

examine the utilization of all the Storage Nodes

and transparently move Component Objects from

over-full Storage Nodes to underutilized Storage

Nodes.

Both Passive and Active Capacity Balancing are used

when new Storage Nodes are incorporated into a

realm. If a realm is expanded by 20%, for example,

Passive Capacity Balancing will immediately begin

using those new Storage Nodes as one part of some

newly created files. In the background, since the

utilization of those new Storage Nodes is so much

lower than the utilization of the existing Storage

Nodes, Active Capacity Balancing will begin moving

Component Objects to the new Storage Nodes.

The new Storage Nodes will immediately begin

contributing to the performance of the realm and

will gradually pick up more and more of the realm’s

workload until all the Storage Nodes are contributing

equally to the overall performance of the realm

again.

Both active and passive capacity balancing

happen seamlessly and continuously without

any administrator intervention.

WHITE PAPER

12Panasas PanFS 8: Architectural Overview

The price/performance and mixed-workload

performance of a storage subsystem depends heavily

upon how effectively its architecture makes use

of the performance of the underlying commodity

storage devices (e.g.: HDDs, SSDs, etc). Panasas is

uniquely expert in getting the most performance

from all those devices.

In our most recent product, the ActiveStor Ultra,

we have developed a new approach that we call

Dynamic Data Acceleration Technology. It uses a

carefully balanced set of HDDs, SATA SSD, NVMe

SSD, NVDIMM, and DRAM to provide a combination

of excellent performance and low cost per TB.

• HDDs will provide high bandwidth data storage

if they are never asked to store anything small

and only asked to do large sequential transfers.

Therefore, we only store large Component Objects

on our low-cost HDDs.

• SATA SSDs provide cost-effective and high-

bandwidth storage as a result of not having any

seek times, so that’s where we keep our small

Component Objects.

• NVMe SSDs are built for very low latency accesses,

so we store all our metadata in a database and

keep that database on an NVMe SSD. Metadata

accesses are very sensitive to latency, whether it

is POSIX metadata for the files being stored or

metadata for the internal operations of the OSD.

• An NVDIMM (a storage class memory device)

is the lowest latency type of persistent storage

device available, and we use one to store our

transaction logs: user data and metadata

being written by the application to the OSD,

plus our internal metadata. That allows PanFS

to provide very low latency commits back to the

application.

• We use the DRAM in each OSD as an extremely

low latency cache of the most recently read or

written data and metadata.

To gain the most benefit from the SATA SSD’s

performance, we try to keep the SATA SSD about

80% full. If it falls below that, we will (transparently

and in the background) pick the smallest Component

Objects in the HDD pool and move them to the SSD

until it is about 80% full. If the SSD is too full, we will

move the largest Component Objects on the SSD

to the HDD pool. Every ActiveStor Ultra Storage

Node performs this optimization independently and

continuously. It’s easy for an ActiveStor Ultra to pick

which Component Objects to move, it just needs to

look in its local NVMe-based database.

Figure 5 – Dynamic Data Acceleration Optimizes Device Performance

Consistent Mixed Workload Performance

Overall Workload To OSD Stored OnSeparated By Size PanFS on ActiveStor Ultra

Metadata

Small Files

Large Files

NVMe
SSD PanFS

OSDv4
Software

Linux

25
 G

b
E

E
D

R
 IB

SATA
SSD

SATA
HDD

WHITE PAPER

13Panasas PanFS 8: Architectural Overview

The ActiveStor Ultra node architecture results

in three significant advantages: each storage

device only performs operations it is good at

so we get more from it, small file accesses never

wait for large files since they’re on separate

devices, and latency-sensitive metadata

accesses never wait for anything.

The Most Performance Efficient
HPC File System
Comparing the efficiency of HPC storage systems can

be difficult. The range of architectural assumptions

and technologies applied by each make apples-to-

apples comparisons nearly impossible, so we need

to start by deciding on a metric of comparison. We

believe that it’s fair to compare hybrid configurations

such as ActiveStor Ultra that contain both HDDs

and SSDs to other hybrid systems and to compare

all-flash deployments to all-flash deployments.

Figure 6 – Bandwidth Delivered (in GB/s) per
100 HDDs for Comparable HPC Storage Systems

In hybrid systems, the dominant share of the total

capacity in the system will be in the cost-effective

HDDs, so measuring the peak aggregate performance

delivered to the compute cluster divided by the

number of HDDs in the storage cluster is an easy-to-

understand approach. It shows how efficient the file

system architecture is and how much performance

it can extract from a given number of HDDs. In the

graph above, we’ve plotted GB/s delivered per 100

HDDs in the storage system, and PanFS is clearly at

the next level.

As a result of focusing on using each type

of storage device only for what it is good at,

PanFS can deliver twice the performance from

a given overall capacity point as other

products.

Single-Tier Storage Nodes Versus
External Tiering
Storage Nodes in PanFS are typically built using an

all hot design principle. We first decide how many of

each type of storage device (e.g.: HDDs, SATA SSDs,

NVMe SSDs, etc) will be in a new Storage Node

design. We then ensure that there is enough network

bandwidth in and out of that Storage Node to keep

every storage device in that Node completely busy

all the time. And finally, we include appropriate CPU

power and DRAM in each Node to drive both the

network and the devices to full performance.

Our Storage Node’s balanced architecture

gives us the optimal price/performance,

nothing is over-provisioned, and everything is

working at peak efficiency.

In contrast, some other storage products segregate

their flash-based devices into a hot tier and the more

cost-effective HDDs into a cold tier in an attempt

to reduce the overall average cost per TB. Typically,

that takes the form of a heavyweight, separately

administered cold archive with an S3 interface.

Fastest Parallel File System
at Any Price Point

Panasas v. Competition GB/s/100 HDD

PanFS BeeGFS Lustre GPFS

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

Comparative Read Performance of PanFS v. Competitive
Parallel File System in GB/s

This means that for any given capacity,
Panasas is 2X faster than Lustre, GPFS and BeeGFS

WHITE PAPER

14Panasas PanFS 8: Architectural Overview

Those storage products move files between their

hot and cold tiers based upon temperature, how

recently a file has been accessed.

That’s based upon the simplistic theory that if you

haven’t accessed a file in a while, you won’t access

it for a while longer. For some important workloads

such as AI, that simply isn’t true.

PanFS uses Component Object size as the metric to

move content between the different device types

within each ActiveStor Ultra Node. Each device type

has different per-TB costs, but our purpose in moving

the data between the device types is to get the most

performance out of those storage devices rather than

trying to manage costs.

We gain cost savings as an intended side

benefit from our focus on device performance

rather than losing performance as a side effect

of a focus on cost.

ActiveStor Ultra’s multiple storage media types,

when managed by PanFS, form an elegant storage

platform that can automatically adapt to changing file

sizes and workloads, with all those devices directly

contributing to the application performance you need.

With heavyweight tiering, since an application can

only directly access the hot tier, the hardware in the

cold tier cannot contribute to the performance the

application needs. That results in three types of costs:

1) The stranded performance costs of not

allowing the HDDs to contribute to application

performance, thereby lowering the effective price/

performance profile of the system.

2) The monetary costs of the additional networking

and hot tier storage performance required to

move data between the hot and cold tiers without

impacting application I/O performance.

3) The direct costs of administering two separate

tiers plus the policies required to move data

back and forth. The cost of skilled employees is a

significant piece of the overall TCO of HPC-class

storage systems.

All the storage hardware you buy should be

contributing to the performance you need.

WHITE PAPER

 © 2020 Panasas, Inc. All rights reserved. Panasas, the Panasas logo, ActiveStor, PanFS and DirectFlow are trademarks or registered trademarks of Panasas, Inc. in the U.S. and/or other countries.
All other trademarks, registered trademarks, trade names, company names and service marks are the respective properties of their holders.
2020-08-04_WP_ PanFS_8_Architecture

For more information about Panasas visit www.panasas.com

Conclusion – PanFS is the Most Adaptive
and Consistent High-Performance Storage
System Supporting the Diverse and Changing
Workflows in HPC and AI
Inconsistent performance and lack of adaptability in the face of change has been a

major headache for both application users and storage administrators. PanFS with

Dynamic Data Acceleration eliminates this headache by providing HPC and enterprise

IT organizations with a high-performance plug-and-play storage solution that keeps up

with their pace of change.

PanFS’ focus on reliable and consistent performance at low administrative costs is in

stark contrast with the traditional HPC systems where price-performance is traded

for complexity, instability, rigitity and outages. PanFS with Dynamic Data Acceleration

offers a low complexity, low touch, reliable HPC storage system that delivers consistent

and fast total-performance by automatically adapting to changing file sizes and

workloads without tuning or manual intervention.

Installing a PanFS realm for your HPC storage puts you on an accelerated path to meet

your organization’s goals: faster time to insights, higher quality products, and lower

total costs.

