

# Supercomputer Fugaku and Fujitsu commercial supercomputers

Toshiyuki Shimizu

2020.11.17

**FUJITSU LIMITED** 

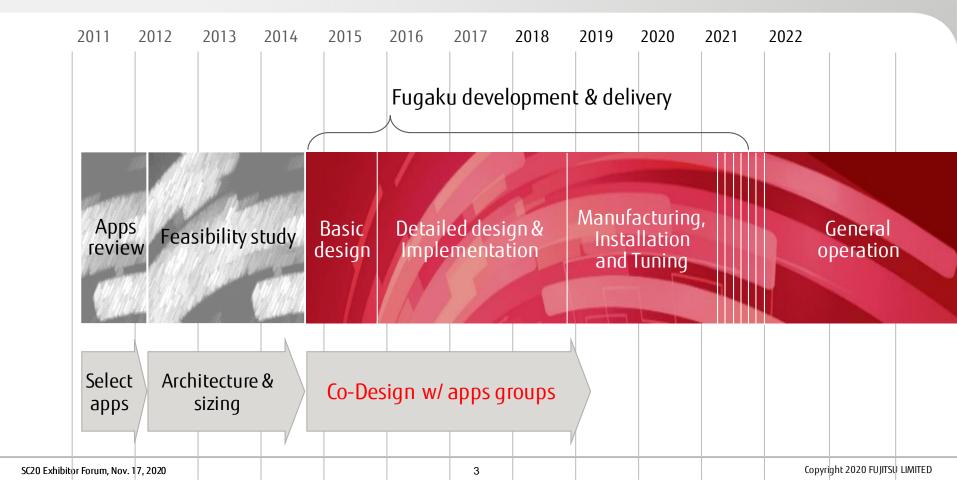
<u>Update at SC20 in appendix</u>

SC20 Exhibitor Forum, Nov. 17, 2020 Copyright 2020 FUJITSU LIMITED

#### Outline



- Supercomputer Fugaku project
  - Approach & design results
  - Benchmark results & analysis
- Fugaku and FUJITSU Supercomputer PRIMEHPC FX1000/FX700
  - Specification and software stack
  - OSS and ISV applications
- Approach and status for Al
- Summary

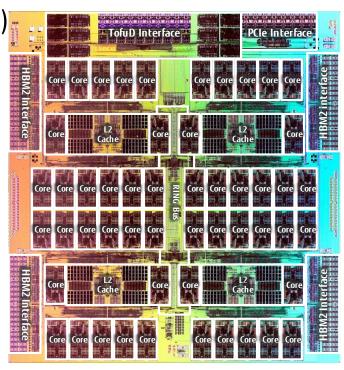

# Design targets and approaches for Fugaku



# Target Approach Co-design w/ application developers and Fujitsu-designed CPU core w/ high memory bandwidth utilizing HBM2 Power efficiency Leading-edge Si-technology, Fujitsu's proven low power & high performance logic design, and "Power Knobs" Armv8-A ISA with Scalable Vector Extension ("SVE"), and Arm standard Linux

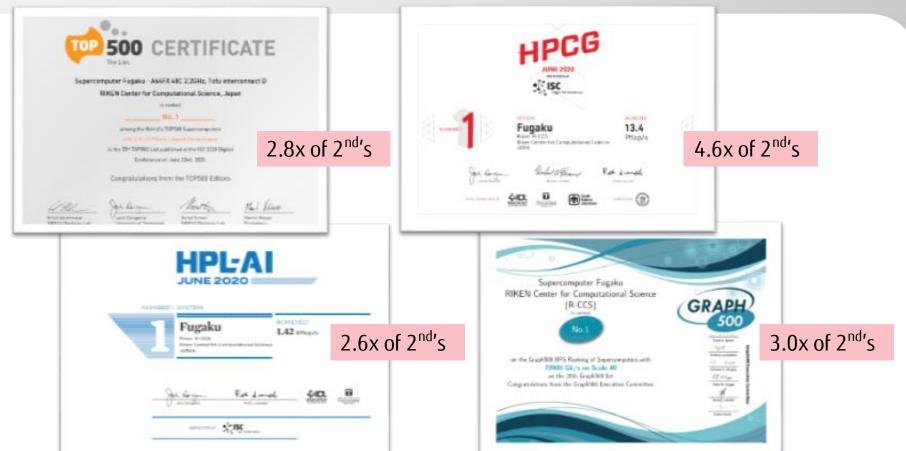
# Fugaku project schedule






#### A64FX CPU for supercomputers

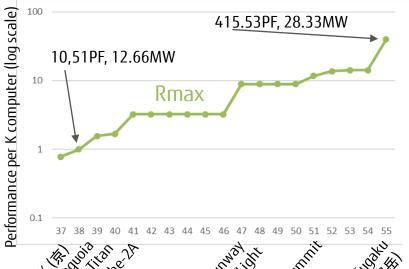



- All-in-one 7nm SoC w/ low power consumption
  - Armv8.2-A, 512-bit SVE (Scalable Vector Extension)
  - Four HBM2, 32 GiB per package
  - Tofu Interconnect D integrated
  - HW inter-core barrier & sector cache
  - 48 compute cores &4 assistant cores for OS daemon & MPI offload

| CPU core frequency    | 1.8       | 2.0 | 2.2  | GHz    |
|-----------------------|-----------|-----|------|--------|
| Peak DP perf (FP64)   | 2.7       | 3.0 | 3.3  | TFLOPS |
| Peak SP perf (FP32)   | 5.5       | 6.1 | 6.7  | TFLOPS |
| Peak HP perf (FP16)   | 11        | 12  | 13   | TFLOPS |
| Memory peak bandwidth | 1024 GB/s |     | GB/s |        |



#### Fugaku ranked at 1<sup>st</sup> place in all categories, June 22, 2020



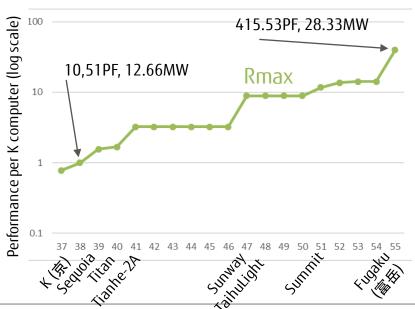


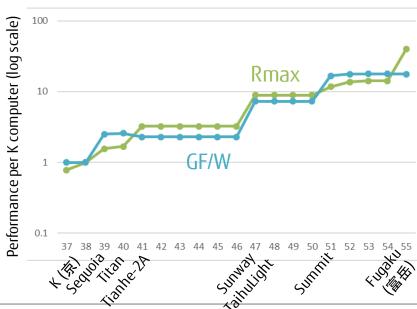

# TOP500 #1 history from K computer to Fugaku



- Performance improvement from K computer is about 40x while power consumption is only 2.2x => 12.66MW vs 28.33MW
- Good scalability and HPL execution efficiency of Tofu Interconnect D, MPI, job management software, and reliable hardware



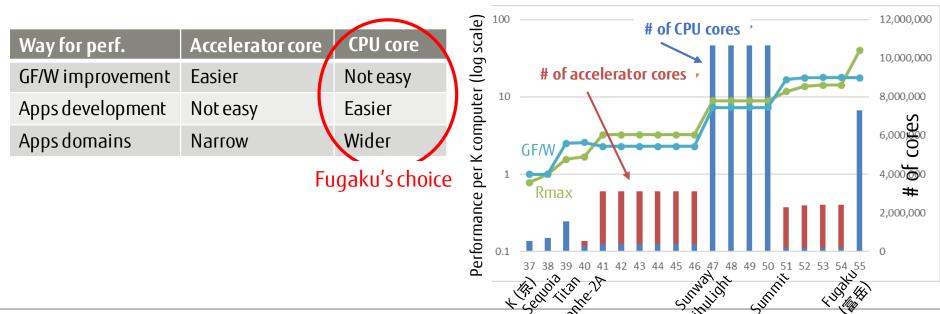

#### Scalability & HPL execution efficiency


|                  |            |         | -                |
|------------------|------------|---------|------------------|
| System           | # of nodes | HPL eff | Interconnect     |
| Fugaku (富岳)      | 152,064    | 80.87%  | TofuD            |
| Summit           | 4,356      | 74.01%  | Infiniband       |
| SunwayTaihuLight | 40,960     | 74.15%  | Custom           |
| Tianhe-2         | 16,000     | 61.68%  | Custom(Fat tree) |
| Titan            | 18,688     | 64.88%  | Gemini           |
| Sequoia          | 98,304     | 81.09%  | Custom(5D torus) |
| K computer (京)   | 88,128     | 93.17%  | Tofu             |

# TOP500 #1 history from K computer to Fugaku



Flagship machine power consumption (GF/W) is important due to societal demand on limiting power consumptions of facilities

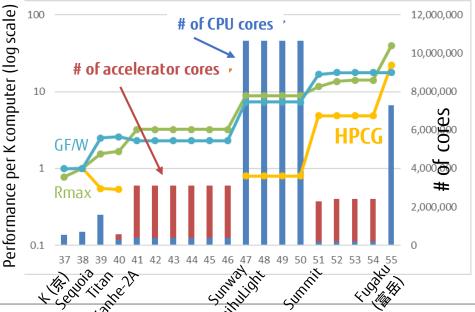





#### TOP500 #1 history and Fugaku's choice



Fugaku improved CPU core performance, avoiding external accelerators for apps execution performance




# TOP500 #1 history and Fugaku's choice

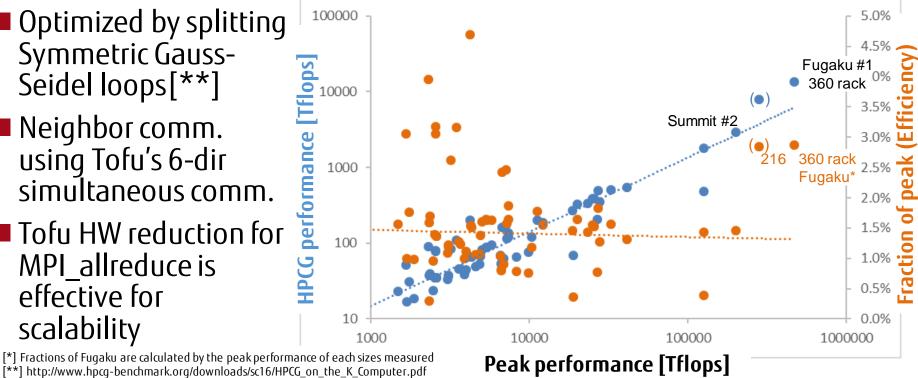


- ■Good results in all four benchmarks
  - TOP500 #1, HPCG #1, HPL-AI #1, Graph500 #1

| Way for perf.    | Accelerator core | c CPU core      |
|------------------|------------------|-----------------|
| GF/W improvement | Easier           | Not easy        |
| Apps development | Not easy         | Easier          |
| Apps domains     | Narrow           | Wider           |
|                  | ı                | Fugaku's choice |



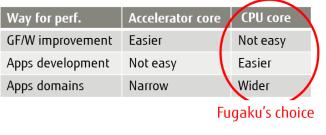
HPCG number of Tianhe-2A is not published


SC20 Exhibitor Forum, Nov. 17, 2020 9

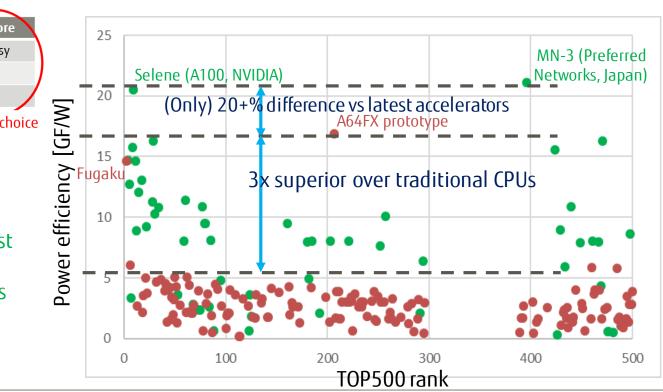
#### HPCG results of TOP500 @ ISC20 + Fugaku 216-rack



■ Fugaku's efficiency is very high and the same in both system sizes ~3%


- Optimized by splitting Symmetric Gauss-Seidel loops[\*\*]
- Neighbor comm. using Tofu's 6-dir simultaneous comm.
- Tofu HW reduction for MPI allreduce is effective for scalability




#### Fugaku and A64FX greenness on TOP500, June 22, 2020



#### ■ Power efficiency in GF/W, w/ ACC and w/o ACC



A64FX demonstrating power efficiency comparable to latest accelerators, and 3x superiority cf. traditional CPUs



#### Outline



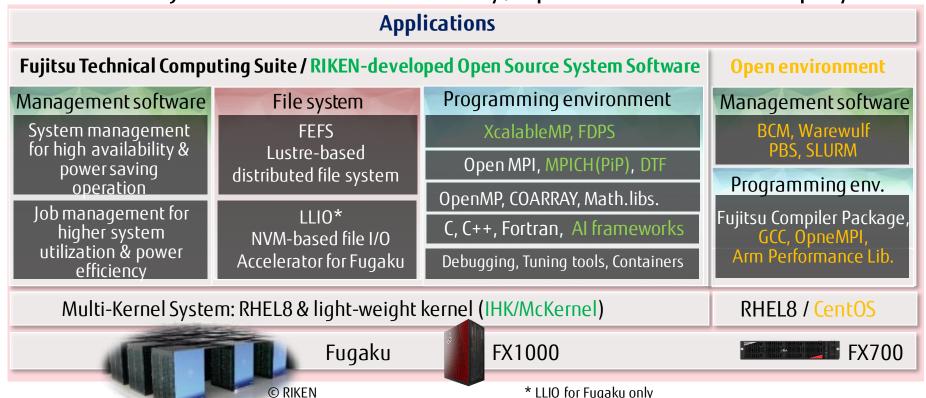
- Supercomputer Fugaku project
  - Approach & design results
  - Benchmark results & analysis
- Fugaku and Fujitsu supercomputer FX1000/FX700
  - Specification and software stack
  - OSS and ISV applications
- Approach and status for Al
- Summary

Fugaku and Fujitsu supercomputers

Mgmnt software

|                     | eninu.                                 | 60                                                          | © RIKEN    |  |
|---------------------|----------------------------------------|-------------------------------------------------------------|------------|--|
| Model               | FX700                                  | FX1000                                                      | Fugaku「富岳」 |  |
| Concept             | Cooperation with standard technologies | Application performance, energy efficiency, and scalability |            |  |
| CPU                 | A64FX x8 / chassis                     | A64FX x384 / rack                                           |            |  |
| Max CPU clock freq. | 1.8 GHz / 2.0 GHz                      | 2.2 GHz                                                     |            |  |
| Interconnect        | InfiniBand EDR                         | Tofu Interconnect D                                         |            |  |
| Cooling             | Air                                    | Water                                                       |            |  |
| Dimension           | 2U rack mountable                      | Custom: 800 mm x 1,400 mm x 2,000 mr                        |            |  |

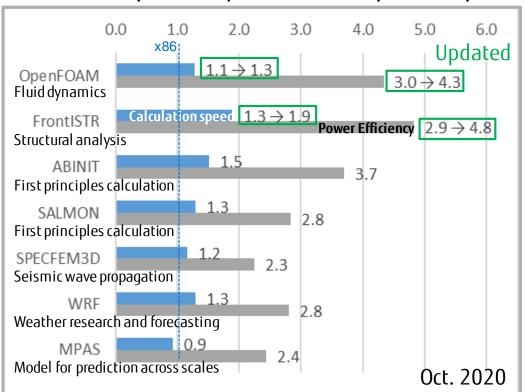
SC20 Exhibitor Forum, Nov. 17, 2020 Copyright 2020 FUJITSU LIMITED


Fujitsu Technical Computing Suite

BCM, Warewulf, PBS, SLURM

#### Powerful software stack for A64FX systems



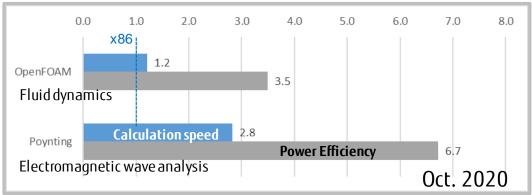

■ RIKEN & Fujitsu software for scalability, Open env. for easier deployment



#### OSS application performance results on FX1000



#### FX1000 (48 cores) vs x86 sever (48 cores) \*




- Xeon and A64FX w/ the same number of cores\*
  - Up to 1.9 times faster
  - Up to 4.8 times lower energy
- \* A64FX on FX1000: 48 cores ×1 CPU (2.2 GHz) Xeon Platinum 8268: 24 cores ×2 CPU (2.9 GHz)
- Scalable performance obtained by
  - Enhanced microarchitecture for HPC
  - Energy-saving design & implementation
- Performance update of OpenFOAM & FrontISTR from SC19 are apps tuning and compiler enhancement for optimization in SIMD operations

#### CAE application performance results on FX700



#### FX700 (48 cores) vs x86 sever (48 cores) \*



- Xeon and A64FX w/ the same number of cores\*
  - Up to 2.8 times faster
  - Up to 6.7 times lower energy
- \* A64FX on FX700: 48 cores ×1 CPU (2.0 GHz) Xeon Platinum 8268: 24 cores ×2 CPU (2.9 GHz)
- Power efficiency is also good even on the air cooled FX700 compare to the x86 server

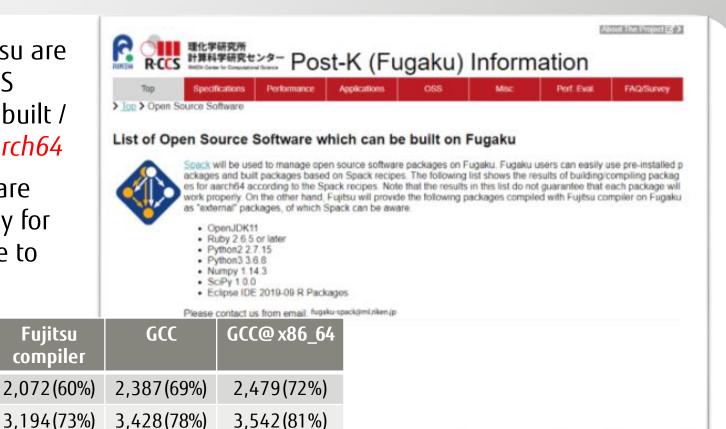
#### Line-up of OSS on AArch64 with Spack



- RIKEN and Fujitsu are maintaining OSS packages to be built / compiled for aarch64
- Over 3000 OSS are built successfully for A64FX and close to x86 64

Reg. apps

3,451


4,335

**Fujitsu** 

Time

SC19

SC20



https://postk-web.r-ccs.riken.jp/oss/public/ captured on Oct. 8<sup>th</sup>, 2020

#### Commercial applications



(as of October 2020)

Fujitsu works with vendors to make commercial apps available for FX1000, also for FX700 and Fugaku with binary compatibility

In a research & development phase **Available** Engineering (Structural analysis, Fluid dynamics and Electronics) Available in **LS-DYNA** Q4 '20 (by Ansys, Inc.) Available in •<u>Poynting</u> Oct. '20 (by Convergent Science) (by Fujitsu Limited) Магс Chemistry\* (by MSC Software Ltd.) Available for **r**Amber FX1000. Gaussian16 **VASP** Installed on (by Gaussian, Inc.) first customer

in Jul. '20

\*Collaboration with Australian National University

**ADVENTURECluster** Altair Radioss™

(by Allied Engineering Co.) (by Altair Engineering, Inc.)

**HELYX** 

(by ENGYS Ltd. & VINAS Co., Ltd.) (by JSOL Corporation)

scFLOW

(by Software Cradle Co., Ltd.)

Ansys Fluent (by Ansys, Inc.)

Simcenter STAR-CCM+

(by Siemens Industry Software Inc.)

VPS (PAM-CRASH)

(by ESI Group)

\*\*All application names used in this slide are trademarks or registered trademarks of their respective venders.

#### Outline



- Supercomputer Fugaku project
  - Approach & design results
  - Benchmark results & analysis
- Fugaku and Fujitsu supercomputer FX1000/FX700
  - Specification and software stack
  - OSS and ISV applications
- Approach and status for Al
- Summary

# Deep Learning environment for A64FX systems

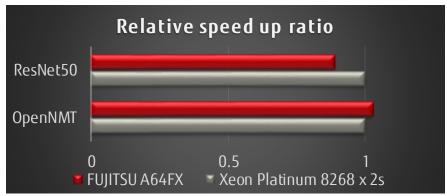


- Deep Learning software stack is now available
  - Fugaku: Pre-build environment is available (DNN library + {TensorFlow, Pytorch, Chainer})
  - FX1000/700: DNN library published as OSS (https://github.com/fujitsu/oneDNN )



- Benefit of supporting Deep Learning on A64FX systems
  - The world's #1 performance of Fugaku can be utilized for Deep Learning
  - Huge simulation results generated by Fugaku can be utilized to AI training efficiently

# A64FX preliminary results for Deep Learning




#### Setup

- Using the same number of CPU cores
  - FX1000 single node (A64FX 2.2 GHz) vs.
     Xeon Platinum 8268 (24 core, 2.9GHz) x2
- ResNet50 (image classification)
- OpenNMT (natural lang. processing)

#### Results

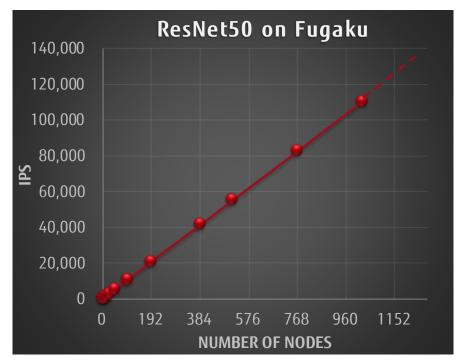
- Performance:
  - Almost the same performance as Xeon
- Energy efficiency:
  - Up to 2.8x more efficient over Xeon



Training using fp32, PyTorch v1.5.0, One DNN\_aarch64, batch size 75 x 4proc.



Training using fp32, PyTorch v1.6.0, OneDNN\_aarch64, batch size 3850 x 2proc.


FX1000

#### Fugaku scalability of Deep Learning, ongoing project



- ResNet50 on multi-node training
  - Good performance scalability is observed
- Beyond 10K node evaluation is ongoing
  - Evaluation in other neural network models
  - Leveraging Data and Model parallelism





Training using fp32, PyTorch v1.5.0, OneDNN\_aarch64, Dummy data, weak scaling

# Collaboration in building software stacks for Al



#### User applications, benchmarks







User support, performance appeal by RIKEN

Deep learning frameworks











Upstream to the DL framework by OneDNN alliance

OneDNN (DNN lib for general purpose CPU)



Upstream to the OneDNN by ARM CPU alliance

DNN lib for ARM



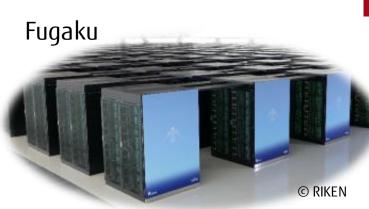






Cybozu'Labs develop and support OneDNN and Xbyak

# Summary




PRIMEHPC

FX1000

■ Fugaku with it's been co-designed approach, was ranked #1 in 4 major supercomputer rankings at ISC20, and runs apps at high performance w/ optimal power consumption

Visit Fujitsu virtual booth@SC20 for the latest info



Fugaku, FX1000, and FX700
 equipped w/ Fujitsu designed
 A64FX CPU are utilized for
 many apps & AI research



PRIMEHPC FX700



# Appendix:

# Update at SC20

2020.11.17

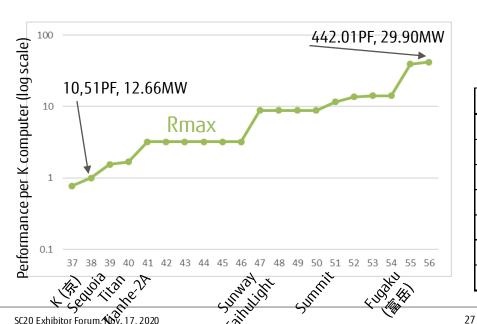
FUJITSU LIMITED

SC20 Exhibitor Forum, Nov. 17, 2020 Copyright 2020 FUJITSU LIMITED

# Results of SC20 Fugaku Rankings at a Glance



#### ■ Fugaku ranked #1 by large margin in ALL performance benchmarks


| Benchmark | Unit   | #1     | Score@June | @Nov   | #2         | Score  | #1/#2 |
|-----------|--------|--------|------------|--------|------------|--------|-------|
| TOP500    | PFLOPS | Fugaku | 415.53     | 442.01 | Summit     | 148.60 | 3.0   |
| HPCG      | PFLOPS | Fugaku | 13.37      | 16.00  | Summit     | 2.93   | 5.5   |
| HPL-AI    | EFLOPS | Fugaku | 1.42       | 2.00   | Summit     | 0.55   | 3.6   |
| Graph500  | TTEPS  | Fugaku | 70.98      | 102.95 | TaihuLight | 23.76  | 4.3   |

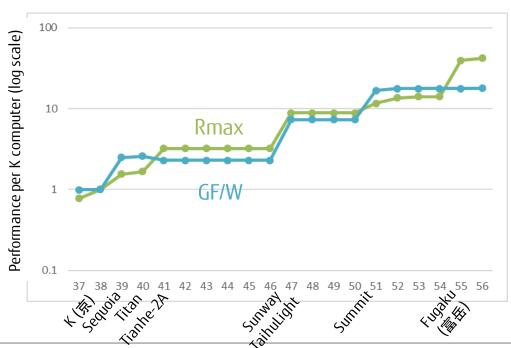
Note: all the benchmarks on Fugaku were conducted on the full machine @ Nov. 2020

#### TOP500 #1 History from K computer to Fugaku



- Performance improvement from K computer is about 42x while power consumption is only 2.4x => 12.66MW vs 29.90MW
- Good scalability and HPL execution efficiency of TofuD interconnect, MPI, job management software, and reliable hardware

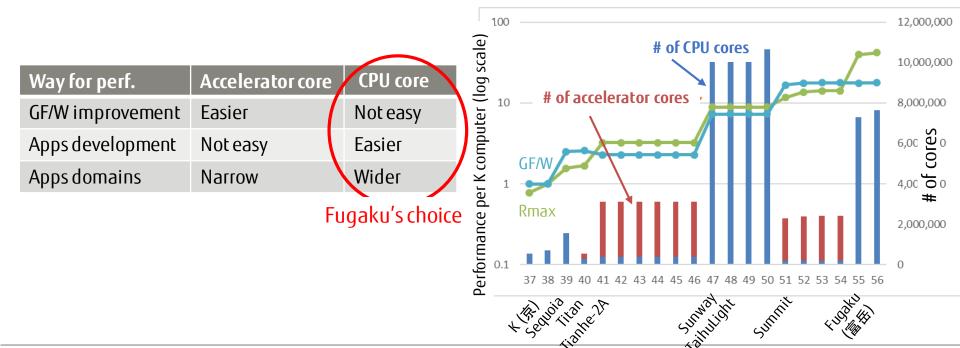



#### Scalability & HPL execution efficiency

| System           | # of nodes | HPL eff | Interconnect     |
|------------------|------------|---------|------------------|
| Fugaku (富岳)      | 158,976    | 82.28%  | TofuD            |
| Summit           | 4,356      | 74.01%  | Infiniband       |
| SunwayTaihuLight | 40,960     | 74.15%  | Custom           |
| Tianhe-2         | 16,000     | 61.68%  | Custom(Fat tree) |
| Titan            | 18,688     | 64.88%  | Gemini           |
| Sequoia          | 98,304     | 81.09%  | Custom(5D torus) |
| K computer (京)   | 88,128     | 93.17%  | Tofu             |

# TOP500 #1 History from K computer to Fugaku



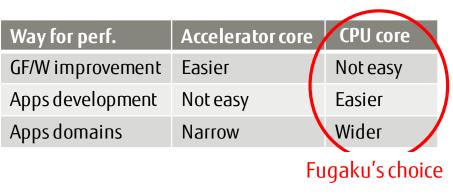

■ Flagship machine power consumption (GF/W) is important due to societal demand on limiting power consumptions of facilities

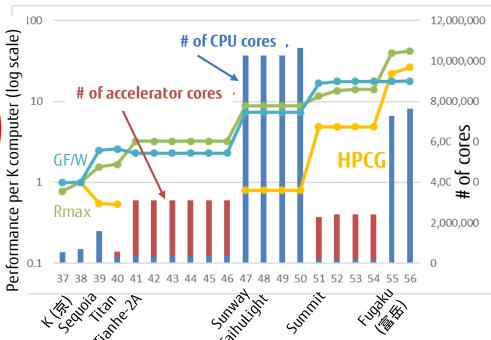


# TOP500 #1 History and Fugaku's Choice



Fugaku improved CPU core performance, avoiding external accelerators for apps execution performance



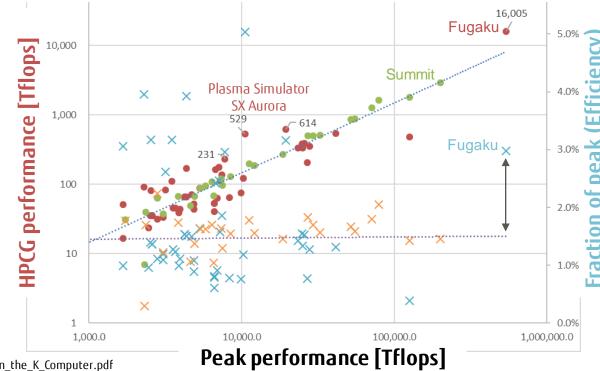


# TOP500 #1 History and Fugaku's Choice



■Good results in other benchmarks

HPCG #1, HPL-AI #1, Graph500 #1





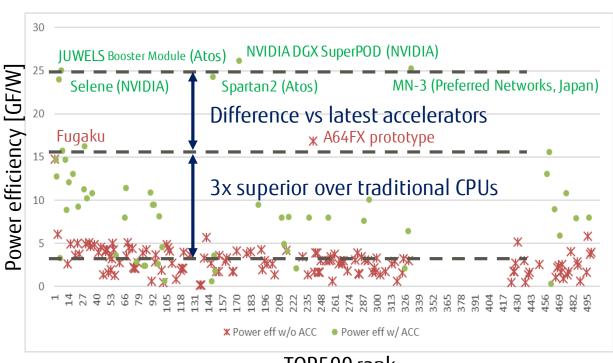

HPCG number of Tianhe-2A is not published

#### HPCG Results of TOP500 @ SC20



- Fugaku's efficiency is very high and the same in both system sizes ~3%
- Optimized by splitting Symmetric Gauss-Seidel loops[\*]
- Neighbor comm. using Tofu's 6-dir simultaneous comm.
- Tofu HW reduction for MPI\_allreduce is effective for scalability




[\*] http://www.hpcg-benchmark.org/downloads/sc16/HPCG\_on\_the\_K\_Computer.pdf

#### Fugaku and A64FX Greenness on TOP500



#### ■ Power efficiency in GF/W, w/ ACC and w/o ACC





TOP500 rank



shaping tomorrow with you