

Agilex[™] FPGA card with QSFP-DD and MCIO 4x 100GbE with up to 384GBytes DDR4 SDRAM

BittWare's IA-840F is an Intel® Agilex[™]-based FPGA card designed to deliver up to 40% higher performance for data center, networking and edge compute workloads. BittWare maximized I/O features on the card using the Agilex chip's unique tiling architecture with dual QSFP-DDs (4× 100G), PCIe Gen4 x16, and three MCIO expansion ports for diverse applications. The card also supports Intel oneAPI[™], which enables an abstracted development flow for dramatically simplified code re-use across multiple architectures.

The IA-840F supports Intel's OneAPI open standards-based unified programming model

Take advantage of BittWare's range of design, integration, and support options

Customization

Additional specification options

or accessory boards to meet your exact needs.

Server Integration Available pre-integrated in our TeraBox servers in a range of configurations.

Application Benchmark Report	~
FPGA Acceleration of Lattice Bc	itzmann using OpenCl.
	Directions such participation for direct Director property accounts, Augustion in Allentin Director and a second second second account of the second account of the second second account of the second count of the second second second count of the second second second count of the second second second second second count of the second second second second second count of the second second second second second second second count of the second second second second second second second second count of the second

Application Optimization Ask about our services to help you port, optimize, and benchmark

your application.

Service and Support BittWare Developer Site provides online documentation and issue tracking.

Board Specifications

FPGA	 Intel Agilex AGF027 in an R2581A package Core speed grade -2: I/O speed grade -2 Contact BittWare for other Agilex FPGA options
On-board Flash	2Gbit Flash memory for booting FPGA
External memory	 3x 288-pin DIMM slots, each supporting up to 128GB DDR4 SDRAM modules (up to 384GB total) Designed-in support for other DIMM modules such as QDR SRAM and Optane. Contact BittWare for details.
Host interface	 x16 Gen4 interface direct to FPGA, connected to PCIe hard IP
QSFP-DD cages	 2 QSFP-DD cages on front panel connected directly to FPGA via 16 transceivers User programmable low jitter clocking supporting 10/25/40/100GbE Each QSFP-DD can be independently clocked Jitter cleaner for network recovered clocking Multi-rate hard MAC+FEC for 10/25/100GbE
MCIO	 2x edge connectors supporting 8x 16G plus GPIO sidebands; supports 4x Gen4 x4 PCle root com- plexes, 2x Gen4 x8 endpoints, or 1x Gen4 x16 root complex or endpoint 1x inner connector supporting 8x 25G plus GPIO sidebands
External clocking	1 PPS and 10MHz ref clk front panel inputs
USB Micro	USB access to BMC, USB-JTAG, USB-UART

Board Management Controller	 Voltage, current, temperature monitoring Power sequencing and reset Field upgrades FPGA configuration and control Clock configuration Low bandwidth BMC-FPGA comms with SPI link USB 2.0 PLDM support Voltage overrides
Cooling	 Standard: double-width passive heatsink Optional: double-width active heatsink (with fan) Optional: double-width liquid cooling
Electrical	 On-board power derived from 12V PCIe slot & two AUX connectors Power dissipation is application dependent Typical max power consumption TBD
Environmental	Operating temperature: 5°C to 35°C
Quality	 Manufactured to ISO9001:2015 IPC-A-610-Class III RoHS compliant CE, FCC & ICES approvals
Form factor	 Standard-height PCIe dual-slot board 4.376 x 10.5 inches (111 x 266.7 mm)

Development Tools

System development	BittWare SDK including PCIe driver, libraries, and board monitoring utilities
Application development	Supported design flows - Intel FPGA oneAPI Base Toolkit, Intel High-Level Synthesis (C/C++) & Quartus Prime Pro (HDL, Verilog, VHDL, etc.)

inte

FPGA Design Solutions Network Platinum

To learn more, visit www.BittWare.com

Rev 2020.11.16 | November 2020

© BittWare 2020

Agilex is a registered trademark of Intel Corp. All other products are the trademarks or registered trademarks of their respective holders.

Stratix 10 AI-optimized FPGA with HBM2

Al-Optimized for High-Bandwidth, Low-Latency Al Acceleration

Designed to tackle the most demanding artificial intelligence workloads, the 520NX is a PCIe card featuring Intel's Stratix 10 NX2100 FPGA. This revolutionary accelerator delivers a unique combination of capabilities needed to implement low latency and larger AI models:

- High-performance AI Tensor Blocks: 143 INT8 TOPS
- Deep Near-Compute Memory: up to 8GB of HBM2
- High-Bandwidth Networking: up to 600Gbps board-to-board bandwidth

The 520NX features a Board Management Controller (BMC) for advanced system monitoring and control, which greatly simplifies platform integration and management.

Take advantage of BittWare's range of design, integration, and support options

Customization

Additional specification options

or accessory boards to meet your exact needs.

Server Integration Available pre-integrated in our <u>TeraBox servers</u> in a range of configurations.

Application Benchmark Report	~
FPGA Acceleration of Latice Ro managements and the second	Izarram using OpenCL Instrumentariotectore kan offer and the test of the April Net to Same Prove and the Same April Net to Same Prove April Net to Same April Net to Same Prove April Net to Same Prove April Net to Same April Net to Same Prove April Net to Same April Net to Same Prove April Net to Same April Net to Same Ap
	Here Here is a state of a problem is the other interpreter is a state of a problem is a state of a problem is a

Application Optimization Ask about our services to help you port, optimize, and benchmark your application.

Service and Support BittWare Developer Site provides online documentation and issue tracking.

Board Specifications

FPGA	 Intel Stratix 10 NX NX2100 in an F2597 package 8GBytes on-chip High Bandwidth Memory (HBM2) DRAM, 410 GB/s (speed grade 2) Core speed grade -2: I/O speed grade -2 Contact BittWare for other Stratix 10 NX options
On-board Flash	2Gbit Flash memory for booting FPGA
External memory	 2x 288-pin DIMM slots each fitted with 16GB modules by default, i.e., 32GB total on board (options up to 256GB total) Contact BittWare for QDR-II+ & Intel Optane (3D-Xpoint) DIMM options
Host interface	 x16 Gen3 interface direct to FPGA, connected to PCIe hard IP
QSFP cages	 4 QSFP28 cages on front panel connected directly to FPGA via 16 transceivers User programmable low jitter clocking supporting 10/25/40/100GbE Each QSFP28 can be independently clocked Jitter cleaner for network recovered clocking 2 QSFP28s have available 100GbE MAC hard IP
OCuLink	 2x edge connectors (A, B) @ 12.5G per lane (default); each supports PCle Gen 3 x8 hard IP, GPIO, and PCle master and optional input clocking 2x inner connectors (C, D) @ 25G per lane (optional); 1x 100GbE MAC hard IP per OCuLink
Board Management Controller	 Voltage, current, temperature monitoring Power sequencing and reset Field upgrades FPGA configuration and control Clock configuration Low bandwidth BMC-FPGA comms with SPI link USB 2.0 PLDM support Voltage overrides

To learn more, visit www.BittWare.com

Rev 2020.11.16 | November 2020

© BittWare 2020

Stratix 10 is a registered trademark of Intel Corp. All other products are the trademarks or registered trademarks of their respective holders.

Cooling	 Standard: double-width active heatsink (with fan) Optional: double-width passive heatsink Optional: double-width liquid cooling
Electrical	 On-board power derived from 12V PCIe slot & two AUX connectors (one 8-pin, one 6-pin) Power dissipation is application dependent Typical max power consumption 225W
Environmental	Operating temperature: 5°C to 35°C
Quality	 Manufactured to ISO9001:2015 IPC-A-610-Class III RoHS compliant CE, FCC & ICES approvals
Form factor	 Standard-height PCIe dual-slot board 4.376 x 10.5 inches (111 x 266.7 mm)

Development Tools

FPGA development	BIST - Built-In Self-Test for CentOS 7 provided with source code (pinout, gateware, PCIe driver & host test application)
Application	Supported design flows - Quartus Prime Pro (HDL,
development	Verilog, VHDL, etc.)

Deliverables

- 520NX FPGA board
- USB cable (front panel access)
- Built-In Self-Test (BIST)
- 1-year access to online Developer Site

inte

• 1-year hardware warranty

FPGA Design Solutions Network Platinum

Bittiviare a molex company

254-U2 U.2 FPGA Accelerator

UltraScale+ on U.2 Form Factor with PCIe Gen4

FPGA-Based Computational Storage Processor for NVME Acceleration

BittWare's 254-U2 is a Computational Storage Processor conforming to the U.2 form factor. Ideal for NVMe acceleration, it features a Xilinx Kintex UltraScale+ FPGA supporting PCle Gen4 directly coupled to local DDR4 memory. This energy-efficient, flexible compute node is intended to be deployed within conventional U.2 NVMe storage arrays (approximately 1:8 ratio) allowing FPGA-accelerated instances of:

- Erasure Coding and Deduplication
- Compression, Encryption & Hashing
- String/Image Search and Database Sort/ Join/Filter
- Machine Learning Inference

The 254-U2 can be wholly programmed by customers developing in-house capabilities or delivered as a ready-to-run pre-configured solution featuring Eideticom's NoLoad® IP. The 254-U2 is front-serviceable in a 1U chassis and can be mixed in with storage units in the same server, allowing users to mix-and-match storage and acceleration.

Order your 254-U2 pre-configured with Eideticom's NoLoad:

- Plug-and-play solution
- NVMe compatible and standards-based with no OS changes
- Reduced TCO/TCA lower power and reduced IO
- CPU offload improves QoS up to 40x
- Disaggregates compute and storage into independently scalable resources
- CPU agnostic
- Reconfigurable accelerators, enabling scalable compute architectures

Learn more at www.eideticom.com

Take advantage of BittWare's range of design, integration, and support options

Customization Additional specification options or accessory boards to meet your exact needs.

Server Integration Available pre-integrated in our <u>TeraBox servers</u> in a range of configurations.

Benchmark Report	~
57GA Acceleration of Lattice Bc	atomenn using OpenCl.

Application Optimization Ask about our services to help you port, optimize, and benchmark

your application.

Service and Support BittWare Developer Site provides online documentation and issue tracking.

Specifications

FPGA	 Xilinx Kintex UltraScale+ KU19P in an FFVB2104 package Core speed grade -2 Contact BittWare for other FPGA options
On-board DDR4 SDRAM	 One bank of DDR4 SDRAM x 72 bits 8GB bank (16GB version also available) Transfer Rate: 2400 MT/s
Host interface	PCle Gen4 x4U.2 ConnectorCompliant to SFF-8639
Datacenter deployment	 On-board NVMe-MI compliant SMBUs controller (Spec. 1.0a) Field flash update via software or SMBus SMBus FPGA flash control: anti-bricking, fallback and multiboot SMBus access to unique board data and tempera- ture sensor
Back panel features	User LEDs accessibleReset switch to restore factory settings
Development features	 JTAG connector for access to the FPGA, flash and debug tools GPIO connector MicroSD connector
Power supply monitoring & reporting	Voltage monitoringTemperature monitoringFault condition reporting to FPGA

Cooling	U.2 drive case optimized for cooling with passive heatsink
Electrical	 Hot swapping tolerant On-card power derived from U.2 supplies Power dissipation is application dependent Typical FPGA power consumption ~20W Card designed to deliver up to 25W power consumption
Environmental	 Operating temperature: 5°C to 35°C Cooling: air convection
Quality	 Manufactured to ISO9001:2008 IPC JSTD-001 -Class III RoHS compliant
Form factor	U.2 compliant 2.5" Drive Form FactorHeight: 15mm

Development Tools

FPGA development	BIST - Built-In Self-Test for CentOS 7 provided with source code (pinout, gateware, PCIe driver and host test application)
Application development	Xilinx Tools - Vivado Design Suite HLx Editions: HDL and C/C++ with HLS

Deliverables

- 254-U2 FPGA board
- Built-In Self-Test (BIST)
- Eideticom NoLoad pre-installed (optional)
- 1-year access to online Developer Site
- 1-year hardware warranty
- Contact BittWare for extended warranty and support options

To learn more, visit www.BittWare.com

Rev 2020.10.26 | October 2020

© BittWare 2020

UltraScale+, Kintex, and Vivado are registered trademarks of Xilinx Corp. All other products are the trademarks or registered trademarks of their respective holders.

Bittiviare a molex company

M.2 Accelerator Module with Xilinx[®] UltraScale+[™] FPGA

The BittWare 250-M2D is an FPGA-based Computational Storage Processor (CSP) designed to meet the draft M.2 Accelerator Module Hardware Specification standard*. It is intended to operate in Glacier Point carrier cards for Yosemite servers. These feature-rich, dense servers are favored by hyperscale and cloud companies striving to improve the performance density and energy-efficiency of machine learning platforms.

The 250-M2D product features a Xilinx Kintex® UltraScale+ FPGA directly coupled to two banks of local DDR4 memory. Customers can either develop their own acceleration applications in HDL, or take advantage of pre-programmed accelerator solutions featuring IP from BittWare partner companies.

Order your 250-M2D pre-configured with the Myrtle.ai SEAL accelerator for recommeder systems:

- Rapid 8x scaling in processing capacity with the same server infrastructure
- 50% less CapEx required to build new processing capacity
- More content ranking within tight latency constraints means better recommendations and hence increased revenue
- Up to 80% reduction in energy consumption
- Easy to install
- Complementary to other accelerators
- Scalable

Learn more at www.myrtle.ai/SEAL

Order your 250-M2D pre-configured with Eideticom's NoLoad:

- Plug-and-play solution
- NVMe compatible and standards-based with no OS changes
- Reduced TCO/TCA lower power and reduced IO
- CPU offload improves QoS up to 40x
- Disaggregates compute and storage into independently scalable resources
- CPU agnostic
- Reconfigurable accelerators, enabling scalable compute architectures

Learn more at www.eideticom.com

Take advantage of BittWare's range of design, integration, and support options

Customization Additional specification options or accessory boards to meet your exact needs.

Server Integration Available pre-integrated in our <u>TeraBox servers</u> in a range of configurations.

Application Benchmark Report	~
FPGA Acceleration of Lattice Bo	itamenn using OpenGL
	<text><text><figure></figure></text></text>

Application Optimization Ask about our services to help you port, optimize, and benchmark your application.

Service and Support BittWare Developer Site provides online documentation and issue tracking.

Specifications

FPGA	 Xilinx Kintex UltraScale+ KU3P in an B784 package Core speed grade -2 Contact BittWare for additional FPGA options
On-board DDR4 SDRAM	 Two banks of DDR4 SDRAM x 32 bits 8GB bank (16GB version also available) Transfer Rate: up to 2400 MT/s
Host interface	M.2 interface supporting Gen3 x4 PCle
Cooling	Open Compute M.2 accelerator case optimized for cooling with passive heatsink
Electrical	 Hot swapping tolerant Power dissipation is application dependent TDP: 14.85W max Module Absolute Peak Power (20us): 24W

Environmental	 Operating temperature: 5°C to 50°C at module inlet Cooling: air convection
Quality	Manufactured to ISO9001:2008 IPC JSTD-001 -Class III RoHS compliant
Form factor	 M.2 Accelerator Module Hardware Specification* (not designed for standard M.2) * Opencompute.org/wiki/Server/Working

Development Tools

FPGA development	BIST - Built-In Self-Test for CentOS 7 provided with source code (pinout, gateware, PCIe driver and host test application)
Application development	Xilinx Tools - Vivado Design Suite HLx Editions: HDL and C/C++ with HLS
PCIe carrier card	PCIe carrier card allowing 250-M2D to be populated in a standard PCIe slot for lab development

Deliverables

- 250-M2D FPGA board
- Built-In Self-Test (BIST)
- Eideticom NoLoad pre-installed (optional)
- Myrtle.ai SEAL pre-installed (optional)
- 1-year access to online Developer Site
- 1-year hardware warranty
- Contact BittWare for extended warranty and support options

To learn more, visit www.BittWare.com

Rev 2020.10.28 | October 2020

© BittWare 2020

UltraScale+, Kintex, and Vivado are registered trademarks of Xilinx Corp. All other products are the trademarks or registered trademarks of their respective holders.

Zynq RFSoC PCIe & Standalone Platform

Seamlessly cross between analog and digital at up to gigahertz rates

The BittWare RFX-8440 data acquisition card features the third generation Xilinx Zynq[®] UltraScale+[™] RFSoC. This innovative PCle data acquisition card is capable of addressing the entire sub-6 gigahertz (GHz) spectrum – a critical need for applications such as 5G, LTE wireless, phased array RADAR and satellite communications.

The Xilinx Zynq[®] UltraScale+[™] RFSoC integrates RF-class A/D and D/A converters into the Zynq[®] FPGA fabric and multi-core ARM processor subsystem, creating a multi-channel data conversion and processing solution on a single chip.

With the product development, manufacturing, quality and lifecycle management capabilities of the Molex group behind it, the RFX-8440 is an Enterprise-class product ideal for rapid prototyping as well as volume deployment in end user systems.

OCuLink Expansion Port

Get high-speed digital data on and off the RFX-8440 with support for:

- PCle Gen4 x8 for NVMe or host attachment
- · Dual 100GbE

 Custom lightweight protocols to connect to an FPGA processing board

Inquire about customized Molex connectors/cables as required for your application.

Take advantage of BittWare's range of design, integration, and support options

Customization

Additional specification options

or accessory boards to meet your exact needs.

Server Integration Available pre-integrated in our <u>TeraBox servers</u> in a range of configurations.

Application Benchmark Report	~
FFIGA Acceleration of Lattice Bo	Itemani using OpenCL
	(b) Of provide the start part of protection of other and the property assessment to appropriate to other when the protect other assessment to appropriate the start of the assessment of the start of the start of the start operation of the start of the start of the start operation of the start of the start of the start operation.
	TT.

Application Optimization Ask about our services to help you port, optimize, and benchmark your application.

Service and Support BittWare Developer Site provides online documentation and issue tracking.

Board Specifications

FPGA	 Zynq UltraScale+ RFSoC XCZU43 in an E1156 package Core speed grade -2 Contact BittWare for other FPGA options
Analog	 Optimized for L Band: 1GHz - 2GHz Other analog configurations available; contact BittWare 4 x 5 GSPS 14-bit ADCs -40 to 0 dBm (default) 4 x 10 GSPS 14-bit DACs -40 to 0 dBm (default) Programmable clocks External reference and triggers SSMC style connectors
On-board flash	Flash memory for booting FPGAFlash memory for ARM bootloader and OS image
External memory	 16GB DDR4 processing system (ARM) memory with ECC 8GB DDR4 programmable logic memory with ECC
External digital interfaces	 Processing system PCle Gen2 x1 RJ45 Ethernet USB UART USB 3.0 Mini DisplayPort Programmable logic Up to 200 Gb/s via 8× 25G OCuLink Hard IP support for dual 100GbE and PCle Gen4

Cooling	 Standard: double-width passive heatsink Optional: double-width active heatsink (with fan) Optional: single-width passive heatsink
Electrical	 On-board power derived from 6-pin AUX connector or optionally from 12V PCle slot connection Power dissipation is application dependent Typical max power consumption 50W
Environmental	Operating temperature: 5°C to 35°C
Quality	 Manufactured to ISO9001:2015 IPC-A-610-Class III RoHS compliant CE, FCC & ICES approvals
Form factor	 ¾-length, standard-height PCIe dual-slot card (x16 mechanical) Supports standalone operation RFX-8440 can be ordered as a TeraBox[™] integrated server platform

Development Tools

FPGA development	BittWare provides a basic data capture and replay example utilizing the major interfaces of the product.
-	Xilinx Vivado development tools are fully supported for development of custom designs.

Deliverables

- RFX-8440 Analog Data Acquisition Card
- Data capture and relay example Full source code
- 1-year hardware warranty
- Cable pack (optional)

To learn more, visit www.BittWare.com

Rev 2020.10.15 | October 2020

© BittWare 2020

UltraScale+, Zynq, and RFSoC are registered trademarks of Xilinx Corp. All other products are the trademarks or registered trademarks of their respective holders.

