

Intellectual Data Storage-on-Demand Systems

Pavel Lavrenko
Chief Business Development Officer
RSC Group

Flash Memory Summit 2020 Virtual Event

RSC BasIS Platform: Orchestration for High Performance Composable Storage Architectures

HPC innovations since 2009

Development of innovative ultra-high dense and energy efficient HPC solutions delivering unique features and addressing specific end-user needs

Points of Excellence

Market presence

Computing density

Energy efficiency

density

Ease to manage and maintain

- Leading Universities
- Russian Academy of Sciences
- CERN JINR Cooperation
- Bioinformatics
- Astrophysics
- Medicine

Industry

- Aviation
- Energy
- Computer Graphics
- Oil&Gas and others

Cloud Deployments

From Rackscale to Composable RSC

RSC Composable Lineup

Unified Rack Up to 153 nodes 0.64m², 2m height (42U)

Compute nodes
Hyperconverged nodes
Storage nodes

RSC BasIS CDI
Orchestration Platform

Modern Approaches

1. Hyperconvergence

- Performing compute and storage tasks on unified servers
- Horizontal scalability
- Dynamic software orchestration

2. Disaggregation and dynamic composition

- Transforming distributed storage and compute elements into pools of devices
- Dynamically switching devices between servers with virtually zero "cost" (latency, CPU load)

3. End-to-end Orchestration

- Rebuilding configurations of the entire system "on the fly"
- Creation of several "domains" (clusters) with different configurations

RSC Vision on Multi Tier Architecture RSC

New storage technologies open an opportunity to decompose storage into different tiers for different processing models

Transformation of storage architectures RSC

«One-size-fits-all» centralized storage

Burst Buffer

Composable Infrastructure

- Should sustain peak system loads
- Extremely high cost
- Should be scaled with compute growth
- Helps to sustain system overload spikes
- Still considered a huge storage investment
 - Underutilized under compute-bound workloads

Decoupled storage tiers:

- Task-defined on-demand configuration
- Balanced Performance
- Configurable lifetime

Storage performance scales with the compute growth

Static Hardware-Centric

Dynamic Workflow-Centric

RSC BasIS Platform

RSC BasIS Orchestration

Vertical integration of Hardware, Software and Infrastructure components

Knowledge about all datacenter objects and their connections

Microagent Mesh for Cluster Automation

App Repository

Agents

Agent Lifecycle

Messaging system

SDK

Knowledge of objects

- Auto-discovery
- Inventory and classification
- Knowledge of topologies
- Dynamic selection based on Query language

Continuous configuration

- Repository of configuration
- Maintaining consistency

Group Commands Execution

- Human operator Platform
- Agent to agent

Monitoring

- Dynamical status representation
- GUI for drill-down analysis
- Problem-oriented dashboards

Cluster Automation

Extended management • v20.10-rc

Configuration templates

🔥 Object tree

configured

disks

geometric

🖸 jobs

nodes

ора

processes

😝 quad1

storage

👪 uuid

🖪 xcat

Empty groups: 2

Objects Settings En ▼

© Q geometric.root Search ☐ Geometric → ☆

♠ Log out

Objects

Settings

Q geometric.root Search Geometric ▼ ☆ Attributes Commands Configure ≣rack1 | tornado153r ■ rackdgx | 19-inch ■ rack3 | 19-inch Updated 27 sec. ago Background **X** cpu/cores 36 48 72 N/A . Indicator health/status × · down drained • • idle mixed N/A • Make default × Reset 8

Q geometric.root

Q

configured

disks

geometric

🖸 jobs

nodes

Ора

processes quad1

storage

uuid 🗗

🖪 xcat

Empty groups: 2

Objects Settings Superadmin En → 🕩 Log out

Search

Geometric

▼ ☆

QDSL


```
DNS-like path: slot1.chassis2.rack3.geometric, n01p001.nodes.root, switch2.access.networks

Wildcard: *.*.rack1.geometric, *.chassis1.*.geometric

Ranges: [n01p001, n02p002, n03p003].nodes, sky[08-10], n01p[001-002, 010-011]

Filters: *[?@._meta.type == 'head' && @.health.status in ['down', 'drain'] || @.metrics.temp > 70?]

<[?@.power.avg_1m > 300?].geometric

All nodes with 1 minute power consumption average is greater then 300W
```

NVMe Storage device location:

```
[root@gvr-head1 ~]# rsc-ba qdsl "*[?@.pcie.numa = 1 & @.block.size = '14 TiB'?].*.nodes" --name | jq .[].name
 nvme0n1"
 'nvme10n1"
 'nvme11n1"
 'nvme12n1"
 'nvme13n1"
'nvme14n1"
 'nvme15n1"
 'nvme1n1"
 'nvme2n1"
'nvme3n1"
'nvme4n1"
 'nvme5n1"
'nvme6n1"
 'nvme7n1"
 'nvme8n1"
 'nvme9n1"
```

Perform full power cycle on a RMC.

Perform full power cycle on a RMC.

Cluster Automation

Extended management v20.10-rc

Configuration templates

♣ Object tree

configured

disks

geometric

jobs

nodes 🔂

opa processes

quad1

storage

🚹 uuid

xcat

Empty groups: 2

Objects Settings En •

Q *[?@.<u>pcie.numa</u> == 1?].s02p001.nodes

Items: 0/9 Sort by: ^fqdn Update freq.: 30 sec.

♠ Log out

▼ ☆

rdma

nqn

host-traddr

 \mathcal{C}

Flat

Search

Usage scenarios and lifecycle

Current focus is to provide the best experience with the well known Lustre file system

Standalone configuration

by admin request

"Prolonged" deployments

Integration with other schedulers

- High Performance Computing (SLURM)
- Cloud (OpenStack, K8S) can be easily supported

On-demand during application run

Other usage models are possible

Hardware platform

Compute node

Highest density
2 CPU
384 GB RAM / 4 NVMe SSD

«Fat» compute node

2 CPU 12 NVMe SSD

999999 99999

Storage node

1 Petabyte32 EDSFF.L NVMe SSD

Lifecycle

pools allocation

*[?@.pcie.numa == 0 && @.block.size == '1.8 TiB'?].disks

Storage service management

Dynamic resource mapping

Creation of dynamic storage

- disk pools
- storage servers pools

lustre1.storage

lustre1.storage

- storage clusters
- storage services

API:

Select storage nodes

n01p[001-020].nodes create-node-pool

Select drives

create-disk-pool

Storage initiation

create-storage

Storage cluster initiation

create-cluster

Storage services initiation

serviceType (MGS, MDS, OSS), numOfDrivers, raidEngine, raidLevel create-service

Map storage topology to disk and server pools

distribute

Run storage

storage-launch

Run high-availability services

pacemaker-launch

Storage-on-Demand Dashboard

Resilience

High availability

Storage-on-demand HA configuration is based on disk RAIDs and node active-passive pairs

The Redundancy topology is based on the following knowledge:

- Power domains
- Cooling domains
- Disk distribution
- Network fabric topology
- Required redundancy on disk and node levels

Optimal fault tolerant topology will be selected automatically or could be provided manually

n06p009-nvmef02 (ocf::heartbeat:nvmeof):

Stopped

Results

10500 Benchmark 2020

Lustre on Demand in POLYTECH:

4 MDS (Total 8 MDT) Intel Optane NVMe 55 OSS (109 OST)* Intel NVMe 59 clients nodes with Intel Xeon Platinum 8268

* One OST NVMe became faulty during the benchmark

Lustre on Demand in JINR:

12 MDS (Total 24 MDT): Intel Optane NVMe 14 OSS (144 OST) Intel NVMe 50 clients nodes with Intel Xeon Platinum 8268

10500 Benchmark 2020

Roadmap

Upcoming features

·l·u·s·t·r·e

Improving Lustre – substituting slow zfs with faster NVMeoF-aware RAID engine:

+20% in bandwidth in IO500

+100% IOPS in IP500

Intel DAOS support (fastest clustered storage, 3 out of 5 systems in top 5 of IO500 list (2020)

New IO500 submission should be published by the time you are watching this presentation ©

www.rscgroup.ru hq@rsc-tech.ru