
MathWorksNews&Notes
The Magazine for the MATLAB® and Simulink® Community

Detecting Oversteering in
BMW Automobiles
with Machine Learning

ALSO IN THIS ISSUE

Modeling and
Simulating Battery
Performance for
Design Optimization

Developing an
Underwater
3D Camera with
Range-Gated Imaging

Developing Advanced
Controls for the
iCub Humanoid Robot

FRACTALS
Interactive experiments with a GPU

A Brief Guide to
Reinforcement
Learning

AI algorithms in this robotic arm let composer and drummer Jason Barnes,
an amputee, drum at speeds that no human ever has before.

“I’ll bet a lot of metal drummers might be jealous of what I can do now.
Speed is good. Faster is always better.”

mathworks.com/drummer

https://www.mathworks.com/company/mathworks-stories/prosthetics-for-drummer.html

Detecting Oversteering in BMW Automobiles
with Machine Learning
BMW’s supervised machine learning model can
detect oversteering—when a vehicle’s rear tires
lose their grip while navigating a turn—
with 98% accuracy.

Developing Advanced Controls for the
iCub Humanoid Robot
IIT’s one-meter-tall, 53-degrees-of-freedom
humanoid is advancing diverse fields of applied
robotics, including balancing, teleoperated
walking, and human-robot collaboration.

Beyond Algorithms and Optimization: Helping
Students to Work and Think Like Engineers
A North-West University professor’s course
assignments demonstrate a core engineering
principle: You can solve difficult engineering
problems when you have the right tools and
know how to use them.

Modeling and Simulating Battery Performance
for Design Optimization

Romeo Power reduces hardware testing by using
modeling and simulation to assess how a battery
pack will perform under a full range of
operating conditions.

Developing an Underwater 3D Camera
with Range-Gated Imaging

A novel imaging system minimizes the effects of
backscatter in a turbid environment—conditions
that would be impenetrable with a traditional
underwater camera.

Cleve’s Corner: GPU Enables
Obsession with Fractals
Cleve explains the math behind some of the
extraordinary fractal images made possible
by interactive experiments with a GPU.

A Brief Guide to
Reinforcement Learning
Familiarize yourself with a branch of machine
learning in which a computer learns to perform
a task through repeated interactions with a
dynamic environment.

FEATURES

4

8

12

14

26

32

An Airplane That Flies Without Moving Parts

MATLAB and Simulink in the World:
Emerging Companies on a Mission

Third-Party Products: Solutions for Developing
Wireless Systems with MATLAB and Simulink

 Deep Learning Deciphers What Rats Are Saying

QUICK READS
23

24

31

37

Managing Editor
Linda Webb

Editor
Rosemary Oxenford

Art Director
Kevin Hart

Graphic Designer
Gabrielle Lydon

Production Editor
Julie Cornell

Technical Writer
Jack Wilber

Digital Production Specialist
Nicole Mosher

Printer
DS Graphics

Print Liaison
Jill Mespelli

Editorial Board
Thomas Andraczek, P.J. Boardman,
Michael Carone, Stacey Gage, Michelle Hirsch,
Andy May, Cleve Moler, Sameer Prabhu,
Richard Rovner, Loren Shure,
John Stewart, Jim Tung

Contributors and Reviewers
A. Balu, A. Bennett, S. Bhadravathi Patil,
G. Bourdon, A. Caraceto, B. Chou, K. Cohan,
S. DeLand, D. Ferigo, T. Freudling, J. Gazzarri,
M. Glasser, T. Grassinger, C. Grytberg,
L. Guthman, L. Harvey, K.H. Haugholt,
A. Hoffman, R. Hyde, P. Kapur, L. Kempler,
T. Lennon, J. Levelt, K. Lorenc, E. Martinho,
P. Massano, A. Nehemiah, C. Patel, R. Pillat,
P. Pilotte, J. Pingel, A. Poon, D. Pucci, O. Pujado,
E. Putnam, P. Risholm, P. Sandberg, G. Sandmann,
C. Santacruz-Rosero, A. Stothert, J. Thielemann,
B. Tordoff, S. Traversaro, E. Tzorakoleftherakis,
P. Vallauri, A. van Nieuwkerk, P. Wallner, C. Wang

Subscribe
mathworks.com/subscribe

Contact Us
mathworks.com/contact

Follow us on social media

Read online

© 2019 The MathWorks, Inc. MATLAB and Simulink
are registered trademarks of The MathWorks, Inc. See
mathworks.com/trademarks for a list of additional trade-
marks. Other product or brand names may be trademarks
or registered trademarks of their respective holders.

18

Printed on 30% post-
consumer waste materials

Frank Hurley’s 1915 photograph of Ernest Shackleton’s ship frozen in ice in Antarctica provides a jumping-off point for Cleve’s fractal exploration (page 26).

https://www.mathworks.com/company/newsletters/signup.html
https://www.mathworks.com/company/aboutus/contact_us.html
https://www.facebook.com/MATLAB
http://www.twitter.com/MATLAB
http://www.linkedin.com/company/the-mathworks_2
https://www.instagram.com/mathworks/
https://www.youtube.com/user/MATLAB
https://www.mathworks.com/company/aboutus/policies_statements/trademarks.html

MathWorks News&Notes 5

Oversteering is an unsafe condition in which
a vehicle’s rear tires lose their grip while

navigating a turn (Figure 1). It can be caused
by worn tires, slippery road conditions, taking a
turn too fast, braking abruptly while turning, or a
combination of these factors.

Modern stability control systems are designed
to automatically take corrective action when
oversteer is detected. In theory, such systems
can identify an oversteering condition by using
mathematical models based on first principles.
For example, when measurements from onboard
sensors exceed established threshold values for
parameters in the model, the system determines
that the car is oversteering. In practice, however,
this approach has proved difficult to implement
because of the interplay of the many factors in-
volved. A car with underinflated tires on an icy
road might need vastly different threshold val-
ues than the same car operating with properly
inflated tires on a dry surface.

At BMW, we are exploring a machine learning
approach to detecting oversteering. Working in
MATLAB®, we developed a supervised machine
learning model as a proof of concept. Despite
having little previous experience with machine
learning, in just three weeks we completed a
working ECU prototype capable of detecting
oversteering with over 98% accuracy.

Today, a single vehicle can generate a
terabyte of measured data in a day.

Machine learning provides an opportunity
to develop software that uses the available
data to learn about a driver’s behavior and

improve the driving experience.

OVERSTEERING
Detecting Oversteering in BMW Automobiles
with Machine Learning
By Tobias Freudling, BMW Group

MathWorks News&Notes 76 MathWorks News&Notes

Collecting Data and Extracting Features

We began by gathering real-world data from a vehicle before, during,
and after oversteering. With the help of a professional driver, we con-
ducted live driving tests in a BMW M4 at the BMW proving grounds
in Miramas, France (Figure 2).

During the tests, we captured signals commonly used in oversteer
detection algorithms: the vehicle’s forward acceleration, lateral accel-
eration, steering angle, and yaw rate. In addition, we logged the driv-
er’s perception of oversteering: When the driver indicated the car was
oversteering, my colleague, riding in the car as a passenger, pressed
a button on her laptop. She released the button when the driver in-
dicated the car had returned to handling normally. These button
presses created the ground-truth labels we need to train a supervised
learning model. Altogether, we captured about 259,000 data points in
43 minutes of recorded data.

Back in our Munich office, we loaded the data that we had collected
into MATLAB and used the Classification Learner app in Statistics
and Machine Learning Toolbox™ to train machine learning models
using a variety of classifiers. The results produced by models trained
on this raw data were not outstanding—the accuracy was between
75% and 80%. To achieve more accurate results, we cleaned and re-
duced the raw data. First, we applied filters to reduce noise on the
signal data (Figure 3).

Next, we used peak analysis to identify the peaks (local maxima) on
our filtered input signals (Figure 4).

Evaluating Machine Learning Approaches

After filtering and reducing the collected data, we were in a better
position to evaluate supervised machine learning approaches. Using
the Classification Learner app, we tried k-nearest neighbor (KNN)
classifiers, support vector machines (SVMs), quadratic discriminant
analysis, and decision trees. We also used the app to see the effect of
transforming features through principal component analysis (PCA),
which helps prevent overfitting.

The results produced by the classifiers that we evaluated are sum-
marized in Table 1. All the classifiers performed well in identifying
oversteer, with three producing true positive rates above 98%. The
deciding factor was the true negative rates: how accurately the clas-
sifier was able to determine when the vehicle was not oversteering.
Here, decision trees outperformed the other classifiers, with a true
negative rate of almost 96%.

Generating Code for
In-Vehicle Tests

The results produced by the decision tree
were promising, but the true test would
be how well the classifier performed on an
ECU in a real car. We generated code from
the model with MATLAB Coder™ and com-
piled the code for our target ECU, installed
in a BMW 5 Series sedan. This time, we
conducted the tests ourselves at a BMW fa-
cility near Aschheim, close to our office. As
I drove, my colleague collected data, record-
ing the precise times when I indicated that
the car was oversteering.

Running in real time on the ECU, the clas-
sifier performed surprisingly well, with an
accuracy rate of about 95%. Going into the
tests, we had not known what to expect be-
cause we were using a different vehicle (a
BMW 5 Series instead of an M4), a different
driver, and a different track. A closer look
at the data revealed that most of the mis-

True Positive (%) True Negative (%) False Positive (%) False Negative (%)

K-Nearest Neighbor with PCA 94.74 90.35 5.26 9.65

Support Vector Machine 98.92 73.07 1.08 26.93

Quadratic Discriminant Analysis 98.83 82.73 1.17 17.27

Decision Trees 98.16 95.86 1.84 4.14

FIGURE 4. The steering angle signal with peaks identified.FIGURE 3. The original steering angle signal (blue) and the same
signal after filtering (orange).

TABLE 1. Summary of results for four different supervised machine learning classifiers.

FIGURE 2. The BMW proving grounds in Miramas, France.

FIGURE 1. Oversteering a BMW M4 on a test track.

matches between the model and the driver’s perceived oversteering
occurred near the beginning and end of the oversteering condition.
This mismatch is understandable; it can be difficult even for a driver
to determine exactly when oversteer has started and stopped.

Having successfully developed a machine learning model for over-
steering detection and deployed it on a prototype ECU, we are now
envisioning numerous other potential applications for machine
learning at BMW. Vast amounts of data collected over decades are
available to us, and today, a single vehicle can generate a terabyte of
measured data in a day. Machine learning provides an opportunity to
develop software that uses the available data to learn about a driver’s
behavior and improve the driving experience. ◆

All the classifiers performed well in
identifying oversteering, with three producing
true positive rates above 98%. The deciding

factor was the true negative rates ...
here, decision trees outperformed the other

classifiers, with a rate of almost 96%.

MathWorks News&Notes 9

By Daniele Pucci, Diego Ferigo, and
Silvio Traversaro, Istituto Italiano di Tecnologia (IIT)

DEVELOPING ADVANCED
CONTROL SOFTWARE FOR
THE iCUB HUMANOID ROBOT

The iCub project was launched in 2004 as part of the RobotCub
European Project, whose main aim was to study embodied cogni-
tion—the theory that an organism develops cognitive skills as it in-
teracts with its environment. The main outcome of the iCub project
is a 1-meter-tall, 53-degrees-of-freedom humanoid currently being
developed at the Italian Institute of Technology (IIT). Over the years,
the iCub robot has been used as a research platform for diverse fields
of applied robotics, including balancing, teleoperated walking, and
human-robot collaboration (Figure 1).

iCub is equipped with more than 50 motors, as well as force-torque
sensors, inertial measurement units, and dozens of encoders and ac-
celerometers. Developing control algorithms for a robot this com-
plex is a difficult challenge. Our team at IIT—the Dynamic Interac-
tion Control team—has created a development workflow based on
Simulink® and Simulink Coder™ that makes it possible for even inex-
perienced team members to rapidly implement new control features,
validate them through simulation, and run them on an iCub robot
without writing any low-level code.

PROTOTYPING iCUB CONTROLLERS
We prototype our control software using Simulink and the open-
source Whole Body Toolbox, developed at IIT. Whole Body Toolbox
is based on the BlockFactory dataflow framework, which we creat-
ed to provide C++ interfaces for dataflow programming. We begin
by modeling the controller in Simulink, incorporating sensors, ac-
tuators, and commonly used robotic algorithms. The Whole Body
Toolbox then creates interfaces to either the real or the simulated
iCub (Figure 2).

We use the Whole Body Toolbox most frequently for applications
involving dynamic balancing. The robot controller regulates the con-
tact forces between the robot and the environment, enabling the ro-
bot to maintain its balance even if pushed or otherwise perturbed by
a human. As a secondary task, the robot tries to maintain a posture
selected by the human: the robot automatically filters out any posture
that alters its balance and stability.

We cosimulate the control model in Simulink with a model of iCub
in the Gazebo robotics simulator (Figure 3). Cosimulation enables us
to fix defects before testing on the actual robot, minimizing the risk
of damaging the robot or endangering a human. For example, with
our cosimulation setup we can determine whether a given set of gains
creates unstable behavior in the robot in the event of unplanned fast
movements.

iCub streams measurements coming from sensors at 100 Hz. These
measurements are published over the network by our robotic mid-
dleware YARP.

Once we have validated the controller via simulations, we test it on a
real iCub in the lab. In our test setup, Simulink runs on a PC with a
standard x86 processor and communicates with the iCub via YARP
middleware and TCP/UDP. The controller running in Simulink
sends torque commands to the robot, which is able to follow a trajec-
tory while maintaining its balance. A real-time synchronizer block,
developed for the Whole Body Toolbox, synchronizes the robot mov-
ing in the real world with the control model.

FIGURE 1. Clockwise from top left: iCub shooting arrows, striking a yoga pose, walking while controlled via teleoperation, and working with a
human to stand up.

MathWorks News&Notes 1110 mathworks.com/news-notes

DEPLOYING THE CONTROLLER
Our over-the-network configuration is convenient for rapid design
iterations, but it leaves iCub reliant on the TCP/UDP communica-
tion link. To break this reliance and enable iCub to operate more in-
dependently, we deploy our controller to an x86 processor inside the
robot’s head, eliminating the need for network communication, with
the associated latency and risk of communication errors.

We generate C++ code from our control models with Simulink Coder,
 compile it, and validate it using the same over-the-network configu-
ration that we used earlier when running the controller in Simulink.
Then, we run the code on the x86 processor mounted inside iCub’s
head, enabling iCub to operate as a single unit rather than on a sep-
arate control PC.

PORTABLE CONTROL DESIGN
Today, about 40 iCub robots are in use by re-
search groups around the world. Although
the hardware designs vary, every version can
use the same controller design. This porta-
bility is made possible by a configuration
block within our Simulink control mod-
el that loads a Unified Robot Description
Format (URDF) file describing the kinemat-
ics and dynamics of each robot. Using this
configuration file, we can run the same con-
troller on IIT’s 120-kilogram, 1.85-meter-
tall simulated WALK-MAN as on a 33-kilo-
gram, 1-meter-tall iCub.

LOOKING AHEAD
We are confident that our research will re-
sult in many real-world applications. For
example, in the future, telexistence could
be used to help the physically disabled per-
form tasks requiring strength or dexterity.
In these cases, a robotic avatar would move
and act in the physical world, remotely con-
trolled by the disabled human.

Our research on agent-robot collaboration
is fundamental to creating robots to help
humans at home and in the workplace—for
example, assisting the elderly with activities
of daily living and helping factory workers
perform tasks involving muscular skeletal
stress. Finally, the new branch of robotics
that we are pioneering, aerial humanoid
robotics, has a multitude of applications.
Jet-powered, heavy-payload aerial plat-
forms can be derived from flying humanoid
robots for drug and food delivery during di-
saster response, heavy-payload last-mile de-
livery, and rescue platforms for firefighters,
as well as platforms for humans performing
high-voltage pylon inspection.

To translate the results of our research
into real applications, we work closely
with the iCub facility that develops, main-
tains, and continuously updates the iCub
humanoid robot. ◆

FIGURE 3. Cosimulating a simple control model in Simulink with a physical model of
iCub in Gazebo.

FIGURE 2. Blocks in the Whole Body Toolbox.

Robot-robot collaboration.

The IIT iCub project includes several lines of research.
The Dynamic Interaction Control team focuses on
three areas: telexistence, agent-robot collaboration
(with the agent being either a human or another hu-
manoid robot), and aerial humanoid robotics.

Telexistence enables a human to exist virtually in
another location via a robotic avatar. In our experi-
ments, the iCub walks and manipulates objects in the
real world while the human walks and manipulates
objects in a virtual environment. When the human
takes a step, we process the human motion and a
reference signal is sent to the iCub, causing it to take
a step. Similarly, when the human closes a hand, a
signal is sent to cause the iCub’s hand to close.

Our research into agent-robot collaboration centers
on ways that humans and robots can work together.
In one of our experiments, a human helps the iCub to
stand from a sitting position. The human wears a spe-
cially designed suit that provide real-time kinematics
and dynamics data, enabling us to track and model
the human’s movements and muscular stresses while
tracking the robot’s movements in Simulink. We re-
cently extended the human-robot collaboration ex-
periment with a robot-robot collaboration version in
which one iCub helps a second iCub to stand.

Aerial humanoid robotics is one of our most active
research areas. We are working on a version of iCub
that will be equipped with jetpacks. It will be able to
fly to a specified location, land, and begin walking
and interacting with the environment. A robot with
these capabilities would be useful in high-risk disas-
ter and search-and-rescue scenarios, such as earth-
quakes, floods, or wildfires. In these situations, the
value of having robots able to fly from one building
to another looking for survivors, open doors, close
gas valves, and enter buildings is incalculable.

A simulated iCub equipped with jetpacks during
inspection maneuvers in a disaster-like scenario.

Redesign of the iCub humanoid
robot with jetpack.

iCUB RESEARCH AT IIT

https://www.mathworks.com/company/newsletters/news_notes/2019.html

MathWorks News&Notes 13

a solution to the nonlinear optimization problem and pass this on
to Simulink to visualize how this solution will perform in different
practical scenarios.

Dynamic Optimizations in Simulink
For the next assignments, the students learn how to solve dynam-
ic optimization problems in Simulink, reworking their initial
MATLAB solutions to handle parameters that vary over time. In the
farming problem, for example, instead of assuming a constant rate of
rainfall based on a seasonal average, the students must now consider
rainfall amounts that vary day by day. They develop Simulink models
in which rainfall, wind speed, cloud cover, and other environmen-
tal variables are simulated using randomly generated values within
a predetermined range (Figure 2). They incorporate the MATLAB
code from the earlier assignment as user-defined function blocks,
and then refine the code and model until they find a solution that
works for different sets of dynamic conditions.

To develop their models, students must first build individual compo-
nents and then figure out how to combine them into a complete sys-
tem. I encourage them to test early and frequently rather than wait-
ing until the entire system is assembled. I also show them how they
can use Simulink Scope blocks to plot signals at any point in their
model and trace errors back through the system, just as an engineer
would when debugging a real-world system.

Working Like Engineers
While I encourage students to complete as much of the final assign-
ment as they can by themselves, I also allow them to work in groups.
Even if they choose to work together, however, every student must
hand in their own assignment and be able to explain to me how each
line of MATLAB code works. I tell my students that it is perfect-
ly acceptable to incorporate partial solutions from others as long as
you fully understand those solutions and how they operate. Some
instructors do not agree with allowing students to include the work
of their classmates, but I believe that my approach reflects the way
engineers work in the real world—most engineers have neither the
time nor the resources to solve every problem from scratch.

MATLAB for Advanced Projects
I recently began teaching a fourth-year course on data analytics in
which students use MATLAB to complete more advanced assign-
ments. I based these assignments on my own research and on thesis
papers written by my postgraduate students. I broke down the data
analysis into three stages. In the first stage, students perform sim-
ple statistical explorations and visualizations of the data. Next, they
apply statistical measures to see how various subsets of data differ
from one another. Finally, they build regression, neural network, and
decision tree models and use them to make predictions based on
the data.

Helping Students to Work and Think Like Engineers
By Alwyn Hoffman, North-West University

FIGURE 1. GUI created by a student in MATLAB.

Beyond Algorithms
and Optimization

The students had six weeks to complete their examination assign-
ments. In the first few weeks, one student visited me several times
during office hours with questions about how to proceed. I found
out that this student shared what he had learned from me with his
classmates—he was acting as a kind of senior engineer or lead engi-
neer working with junior engineers on a real project. Almost every
student in the class completed their assignments and did well.

These results confirmed to me, and proved to them, a core principle
for today’s engineers: You can think through and solve difficult en-
gineering problems when you have the right tools and know how to
use them. ◆

FIGURE 2. Student-created Simulink model for optimizing farm
crop selection.

Undergraduate engineering students are capable of solving much
more complex problems than we give them credit for. I found this
to be true in my Algorithms and Optimization course, where stu-

dents solve optimization problems that require them to deter-
mine what tradeoffs have to be made to satisfy conflicting

requirements and arrive at a viable solution.

While the problems I assign can be readily understood—
for example, helping a farmer decide what crops to
plant to maximize profits—they are too complex to

solve analytically without an appropriate toolset. Stu-
dents must integrate the concepts they’ve learned in
first-year engineering courses with programming
skills to develop a mathematical solution, trans-
late it into code or a model, and then display and
interpret the results.

MATLAB® and Simulink® make it possible
for students to tackle problems of this com-
plexity in one semester. Instead of focus-
ing on low-level implementation details
at the component level, they can use
built-in functions and blocks to devel-

op solutions that would take them up
to 10 times longer in languages like
Python, C, or C#.

Introducing Programming in MATLAB
Students in Algorithms and Optimization have already taken intro-
ductory programming, but most are new to MATLAB. To familiar-
ize them with the MATLAB language and development environ-
ment, the first assignment asks them to build a simple user interface
(Figure 1). The interface incorporates animated, multicolor graphs
of sample data, which engage the students more than static charts.
The entire exercise gives them confidence in their ability to build an
application—one they at first thought complicated—by following a
straightforward process.

The first major assignment is a nonlinear optimization problem to
be solved in MATLAB. In each of the three years that I’ve taught
the course, I’ve presented a different problem. This year, it was the
farming problem: The students had to determine how much land
should be allocated to each of two crops to maximize profits, given
an expected amount of rainfall and electricity costs to run irrigation
pumps. Last year, the students had to optimize an energy manage-
ment system to find the optimal mix of grid, solar, and wind power
production. The year before that, I gave them a mining scenario in
which they had to find the lowest-cost method of operating and ven-
tilating a mine with a combination of diesel- and electric-powered
load-haul-dump (LHD) equipment and ventilation fans.

Each of these scenarios is easy to understand conceptually, but
none has an obvious mathematical solution. Students first translate
the verbal description of the problem into a set of equations. They
must then determine which nonlinear programming techniques to
use and implement a solution in MATLAB. Finally, they generate

MathWorks News&Notes 15

FIGURE 2. Visualization of lookup table resulting from
parameter estimation showing internal resistance as a
function of state-of-charge and temperature.BATTERY DESIGN

Modeling and Simulating Battery Performance
for Design Optimization
By Cecilia Wang, Romeo Power

FIGURE 1. An isothermal 3-RC equivalent circuit developed for parameter estimation
using Simscape blocks. Em = open-circuit voltage, R = resistance, and C = capacitance.

At Romeo Power, we design our battery
packs and battery technology to enable our
customers to produce more efficient elec-
tric vehicles and implement scalable ener-
gy storage systems. Before they select one
of our battery packs for their next product,
our customers need to know how the pack
will perform under the full range of expect-
ed operating conditions, including various
temperatures and states of charge. Assessing
battery pack performance using hardware
prototypes can be both slow and costly, so
we rely on simulation to ensure that we min-
imize hardware testing.

Modeling and simulation with MATLAB®,
Simulink®, and Simscape™ is faster, safer,
and less costly than building physical pro-
totypes.

We can identify algorithms or charging methods that will work for
a particular design without running the whole system. We can test
scenarios that would be difficult or hazardous to test on real batter-
ies and optimize designs for specific applications and usage profiles.
Simulation often reveals errors that are missed during system-level
testing. In addition, our customers can use our models to evaluate
battery packs and battery management systems for their electric
vehicles or commercial and residential energy storage systems.

Characterizing and Modeling Individual Cells
Using Parameter Estimation

To model a battery cell, we need to characterize its properties—how
it performs both initially and after multiple charge-discharge cy-
cles, at various temperatures and states of charge. We run extensive
tests, including open-circuit voltage (OCV) and hybrid pulse pow-
er characterization (HPPC) tests, using a thermal chamber to vary
the cell temperature to cover the operating range of interest. We re-
cord changes in capacity and impedance at various states of charge
after every aging milestone—for example, after every 200 charge-
discharge cycles.

We import the measured data into MATLAB and perform param-
eter estimation to find open-circuit voltage, resistance, and capac-
itance values for an equivalent circuit model, which we build in
Simulink using Simscape voltage source, resistor, and capacitor blocks
(Figure 1).

Parameter estimation involves calculating the equivalent circuit pa-
rameters to match a simulation result to an experimental measure-
ment. We start with a given equivalent circuit topology and a set of
initial parameter guesses. MATLAB optimization functions calculate

MathWorks News&Notes 1716 mathworks.com/news-notes

the parameter values that minimize the discrepancy between simu-
lation and experiment. These steps are repeated at all the tempera-
tures of interest to populate the lookup tables column-by-column.
We repeat the parameter estimation using the data we collected as
the battery aged, creating additional lookup tables for the battery at
each age milestone.

As a result of the beginning of life (BOL) parameter estimation, each
equivalent circuit component will have a two-dimensional lookup
table with columns representing temperatures and rows representing
states of charge. Figure 2 shows an example lookup table, where the
internal resistance R0 is shown as a function of SOC and tempera-
ture.

To verify the parameterized model, we simulate it, plot the simu-
lation results in MATLAB, and compare them with the battery test
results (Figure 3).

Creating Multicell Models

To create a complete battery pack or module, we link individual cell
models in a series or parallel string and then connect the strings in
parallel or series (Figure 4).

We insert convective heat transfer blocks between individual cells
to account for thermal effects. During simulations we monitor the
temperature, SOC, and voltage of individual cells as well as the tem-
perature, voltage, and current of the complete module. By modifying
the number of strings or the number of cells in each string, we can

FIGURE 4. From top to bottom: battery pack model, strings connected in parallel, and
individual cells connected in series.

FIGURE 5. Top: customer battery pack model. Bottom: interface for setting model parameters and
initial conditions.

FIGURE 3. One-day, power-driven simulation for an electric
vehicle application (based on a single cell). Top to bottom:
simulated and measured voltage, current, and state-of-charge.

electric vehicles, for example, may want to integrate a battery model
with a model of the vehicle motor and run vehicle-level simulations
for different drive profiles.

The vehicle model, and even the drive profiles, often contain pro-
prietary information, as do our own battery models. To address this
issue, we developed black-box versions of our battery pack mod-
els. We generated code from our original models and created new
Simulink models based on the compiled code. Our customers have
full control over setting up initial conditions, such as initial SOC,
initial cell temperature, coolant temperature, and heat transfer coef-
ficients (Figure 5).

We anticipate a growing demand for safe, cost-effective, and reliable
batteries to meet the needs of the electric vehicle industry. By model-
ing and simulating in MATLAB and Simulink we can quickly explore
a wide range of cell configurations and optimize the system archi-
tecture in terms of performance, weight, volume, or heat dissipation
requirements. ◆

quickly evaluate different configurations
and identify the best one for a specific ap-
plication.

We adjust the fidelity of our models based on
our own needs or the needs of our customer.
We use a low-fidelity model to generate an
initial design report for new customers who
require a customized design, or when an ex-
isting product framework is not available for
performing system sizing and preliminary
analysis. We use a high-fidelity model for
product validation, cell balancing, develop-
ing state estimation and charger control al-
gorithms, hardware-in-the-loop testing, and
integration into a vehicle platform.

Sharing Models with Customers

Many of our customers run their own sim-
ulations to validate sizing or to see how a
particular battery pack will work within
one of their designs. A company developing

By modeling and simulating in
MATLAB and Simulink we can

quickly explore a wide range of
cell configurations and optimize

the system architecture in terms of
performance, weight, volume, or

heat dissipation requirements.

https://www.mathworks.com/company/newsletters/news_notes/2019.html

Underwater optical imaging has the potential to provide much higher resolution images
than sonar. The clarity of these images, however, depends on the water quality. In turbid
water, active illumination—used in low-light situations—causes backscatter, or the reflec-
tion of light from particles in the water back toward the camera (the same effect that makes
it difficult to drive in fog).

To address this challenge, SINTEF worked with partners across the EU to develop UTOFIA,
an imaging system for turbid environments. By Jens Thielemann, Petter Risholm, and Karl H. Haugholt, SINTEF

Developing an Underwater 3D Camera
with Range-Gated Imaging

UNDERSEA IMAGING

MathWorks News&Notes 2120 mathworks.com/news-notes

The UTOFIA camera delivers 3D images at 10–20 frames per second
with a range of up to 15 meters and a resolution of one centimeter
at depths of up to 300 meters (Figure 1). It uses range-gated imaging
(see sidebar) to minimize the effects of backscatter and obtain range
information for objects in its field of view (Figure 2).

We developed algorithms to process raw data from the camera and
produce 3D, backscatter-free images. We were working in a new do-
main, and we needed to quickly test new ideas. Thanks to the in-
tegrated environment of MATLAB®, with its strong visualization
support, we were able to try more than 40 different approaches and
techniques. In Python® or C++, each implementation and test would
have taken much longer, and it is unlikely that we would have had
time to test more than a handful.

Initial Data Analysis and Peak Detection

Unlike a standard digital camera, which produces 2D arrays of pixels,
our camera produces 3D arrays of cubes, with the recorded value at
each cube representing the intensity of light reflected at a specific lo-
cation in the field of view and at a specific distance from the camera.
To extract useful images from the multigigabytes of data generated

implemented several algorithms for reducing backscatter effects. We
explored many alternatives here, including homomorphic filtering
and variations over histogram equalization, finally selecting unsharp
filtering, which also improved our 3D performance. In addition, we
developed algorithms for camera calibration, 3D estimation, peak
detection, and peak fitting.

Visualizing Image Data

Once we had analyzed the data and developed 3D reconstruction
algorithms, we needed to share the results they produced with oth-
er organizations in the UTOFIA consortium. To do this, we built a
second MATLAB app for visualizing UTOFIA image data (Figure 5).
This app includes controls for adjusting options and algorithm pa-
rameters, including contrast, focus, noise removal, and histogram
equalization. Users can set these parameters and immediately see the
effects on screen.

We packaged a standalone version with MATLAB Compiler™ and
distributed it to our partners, who provided us with feedback and
enhancement requests. Using MATLAB and MATLAB Compiler,
we could implement the changes they requested in a few days.

by the camera, our algorithms must identify the peaks in these in-
tensity values (Figure 3). External factors influence the peak posi-
tions, and the scattering in the water will introduce false peaks. This
reduces the clarity of the resulting image and the quality of the 3D
reconstruction.

To understand the mechanism in action, we performed extensive
statistical analyses on the data for various water turbidities and cam-
era settings. These analyses involved building empirical models of
backscatter, investigating the properties of forward scattering, and
modeling detector response properties.

We also developed a MATLAB app to automate and control the data
capture process (Figure 4). The app includes interface elements to
control the pulse sweeps and a .NET interface that we used to config-
ure capture settings and other camera components.

Developing Algorithms for 3D Reconstruction

The camera hardware diminishes backscatter significantly, but we
knew that we could reduce its effects still further in software. We
developed a model of backscatter response across turbidities and

FIGURE 2. Left: image taken with the UTOFIA camera and colored to show range information. Right: image of the same scene, taken with
a regular camera, showing the effects of backscatter.

FIGURE 3. Peaks in intensity as a function
of distance (middle and bottom) for points
in a captured image (top).

FIGURE 4. MATLAB app used to automate data capture.

FIGURE 5. MATLAB app for visualizing UTOFIA image data.

Top: diagram showing a range-gated imaging
camera. Bottom: images captured at various
distances from the camera.

FIGURE 1. The UTOFIA camera system.

Range-Gated Imaging

Instead of illuminating a target with a constant stream of light, range-

gated imaging uses nanosecond-long pulses of light produced by a

strobed laser. Light reflecting off particles in front of the target returns to

the camera slightly earlier than light reflecting off the target itself. We

can suppress backscatter by controlling the camera shutter to capture

just the light reflected by the target and very little of the light reflected

by particles in the water. In addition, we can accurately determine the

distance to the target by measuring the time-of-flight of individual light

pulses and dividing by the speed of light.

https://www.mathworks.com/company/newsletters/news_notes/2019.html

22 mathworks.com/news-notes

FIGURE 6. Red tuna measurement results produced by the
UTOFIA camera.

FIGURE 7. Visualizations of fish biomass and behavior patterns.

FIGURE 8. Left: images used to track individual fish. Right: image overlaid with length measurement.

Implementing these changes in C/C++ or a similar language would
have taken weeks, if not months.

Continued Development

We have completed the first phase of the UTOFIA project: the devel-
opment of the camera and its core software. We are now performing
additional processing on the image and 3D data for industry-specific
applications and looking into the second phase of the project: apply-
ing machine learning and deep learning to the images to recognize
objects and other phenomena.

The availability of real-time 3D data has opened new possibilities for
improving processes in the fishery and aquaculture industries, par-
ticularly in the area of automated, quantitative analysis. For example,
at an aquaculture facility in Spain, we used the camera to identify and
measure the length of red tuna (Figure 6).

At a research facility in Norway, we used UTOFIA for behavior ana
lysis, tracking individual fish over time to estimate swimming speed
and patterns (Figure 7).

Meanwhile, in aquaculture trials of the camera, fish and other marine
life are being observed in low light and high turbidity conditions for
biomass estimation (Figure 8).

These conditions would have been impenetrable with a traditional
underwater camera. ◆

We built a MATLAB app for visualizing UTOFIA

image data. This app includes controls for adjusting

options and algorithm parameters, including

contrast, focus, noise removal, and histogram

equalization. Users can set these parameters

and immediately see the effects on screen.

https://www.mathworks.com/company/newsletters/news_notes/2019.html

An Airplane That Flies
Without Moving Parts

The plane is powered by a battery pack that
applies a 20,000-volt charge to an array of wires
that run the 5-meter length of the wings. Airfoils
behind each wire are charged to 20,000 volts.

The voltage strips electrons from the nitrogen
molecules in the air, creating ions that flow

from the wires and across the airfoils.

The flow of ions creates “ion drive,” or ionic wind
as the ions bump into air molecules.

Ionic propulsion opens new possibilities for
developing aircraft that are quieter and emission-
free. Meanwhile, conventional jets could improve
their operation while reducing noise and pollution
by incorporating the technology today.

See the plane in flight and learn how MATLAB® was used to test it:

mathworks.com/solid-state-airplane

Researchers at MIT have successfully demonstrated an airplane that has
no propellers, rockets, or jet turbines. It’s the first plane ever to fly using ionic wind.

Image courtesy MIT Electric Aircraft Initiative.

https://blogs.mathworks.com/headlines/2018/12/10/star-trek-inspired-solid-state-airplane-takes-to-the-sky-without-moving-parts/

MATLAB AND SIMULINK IN THE WORLD

Biology-guided radiotherapy, crop-protecting drones, broadband supertowers,
intelligent electric scooters ... Combining novel technologies with bold vision,
engineers at emerging companies are on a mission to improve the lives of
individuals and entire communities.

Beaming Mobile Broadband
to Isolated Communities
Altaeros plans to turn tethered blimps, or
aerostats, into autonomous telecommunication
SuperTowers that deliver high-speed broad-
band to the 4 billion people worldwide with-
out access to the internet. One SuperTower
could service an area that would require up to
20 conventional cell phone towers. Altaeros
has completed pilot tests and is working with
the FCC and the FAA to meet all US feder-
al requirements to operate the SuperTower
commercially.

Solving the “Cocktail Party Problem”
Using a hearing aid, smart home appliance, or other speech-recognition
device in a noisy environment such as a party is challenging because
the microphone has difficulty distinguishing one voice from all the oth-
ers. Yobe’s Voice Identification System for User Profile Retrieval (VISPR)
combines artificial intelligence (AI) and signal processing to identify a
signal’s biometric characteristics, identify individual speakers, and dis-
tinguish speech from noise.

“Our hope is that by accelerating the rollout of rural telecom infrastructure,
we can help bring underserved communities online for the first time.”

– Igor Braverman, Altaeros

“The ways we have been interacting with machines
up until now have been artificial because these
machines haven’t been able to hear us. The natural
way to communicate with something is to talk to it.”

– Ken Sutton, Yobe

Transforming the
City Commute
Ather Energy’s 450 electric scooter is
the first of its kind in India. Designed
for city driving, the Ather 450 can
autonomously navigate tight parking
spots, complicated street systems, and
stop-and-go traffic. It is powered by a
high-capacity li-ion battery pack, and
has a charging range of 46 m and a
top speed of 50 mph.

“We set out to change the way
people perceive electric vehicles ...
In the last five years, we have not only
built the scooter but an ecosystem for
an electric vehicle future.”

– Tarun Mehta, Ather Energy

Riding the Wave of Industry 4.0
Industrial plants are gathering increasing amounts of data as
they move toward full interconnectivity and automation. Until
now, this data could only be accessed on a desktop or tablet.
GlassUpF4 augmented reality (AR) visors enable machine
operators to access the data on the shop floor—and without
stopping work. The visors include a video camera, an LED
lighting system, voice control, and Bluetooth®, as well as a
gyroscope, compass, and accelerometer. A remote-control
dashboard allows the user to share their point of view with any
paired visor for on-the-job training and remote maintenance.

EMERGING COMPANIES
ON A MISSION

Turning Cancer on Itself
RefleXion Medical is developing the first-ever biology-guided
radiotherapy system for cancer treatment. The system combines
a PET scanner and a radiotherapy/radiosurgery machine in a
novel way. By means of PET tracers, tumors continuously signal
their location in real time during treatment. This capability could
one day revolutionize cancer care by enabling clinicians to treat
multiple tumors in a single session.1

1 The RefleXion machine requires 510(k) clearance and is not yet
commercially available.

“Using biology to guide radiotherapy, we hope
to have the means to turn cancer on itself.”

– Sam Mazin, Ph.D., RefleXion

MathWorks News&Notes 2726 mathworks.com/news-notes

By Cleve Moler, MathWorks

GPU
ENABLES
OBSESSION
WITH
FRACTALS

CLEVE’S CORNER
Surrounding these two components are infinitely many nearly circu-
lar discs, and discs upon discs, with ever-decreasing diameters. The
exact locations and shapes of the smallest discs can only be deter-
mined computationally.

It has recently been proved that the Mandelbrot set is mathemati-
cally connected, but the connected region is sometimes so thin that
we cannot resolve it on a graphics screen or even compute it in a
reasonable amount of time.

Computing Mandelbrot
The fascinating patterns that we associate with Mandelbrot come
from the fringe region just outside the set.

Here is the function that is the core of the computation. The input is
a complex scalar starting point z0 and a real scalar parameter that I
call depth. The output is a count kz. If the iteration is terminated
because z is outside the disc of radius of two, then z was destined
to become infinite and the count kz can be used as an index into a
colormap. On the other hand, if z survives depth iterations, then it
is declared to be within the Mandelbrot set.

function kz = mandelbrot(z0,depth)

 z = z0;

 kz = 0;

 while (z*conj(z) <= 4) & (kz <= depth)

 kz = kz + 1;

 z = z*z + z0;

 end

end

Let’s generate a grid of points in the complex plane covering a square
of width w, centered at the complex point zc.

 grid = 512;

 s = w*(-1:1/grid:1);

 [u,v] = meshgrid(s+real(zc),s+imag(zc));

Now comes the only difference between a program that runs on the
CPU and one that runs on the GPU. To generate the grid on a CPU,

 z0 = u + i*v;

 For the GPU,

 z0 = gpuArray(u + i*v);

Then, for either processor, the statement

 kz = arrayfun(@mandelbrot,z0);

applies the scalar function mandelbrot to all the elements of the
array z0. On the CPU, this is a vectorized double for loop over the
grid. On the GPU, the statement is broken down into hundreds of
individual tasks that run in parallel.

Now let’s look at two extraordinary images derived from the
Mandelbrot fringe.

On the Fringe
The region known as the Valley of the Seahorses lies between the
central cardioid and the disc to its left. There are actually two valleys,
one above and one below the real axis. They meet at the red dot that
we saw in Figure 1. With a little imagination, you can picture small
marine creatures living in Figure 2. As we shall see later, the Valley
also contains buried π.

Because the Mandelbrot set is self-similar, it contains an infinite

My GPU is an NVIDIA® Titan V, housed in a separate peripheral
enclosure that is bigger than the laptop and that provides separate
power and cooling. It is roughly 300 times faster than the CPU for
computing these fractals, and completely changes how I interact with
my mandelbrot program. I introduced gpuArray into the pro-
gram and can now use a grid resolution comparable to my screen
resolution and iterate until fine details in the image become visible.

Inside the Mandelbrot Set
What happens in Mandelbrot stays in Mandelbrot. The Mandelbrot
involves a simple iteration with complex numbers, starting at an ini-
tial point z0. The Mandelbrot set is the region in the complex plane
consisting of the values z0 for which the trajectories defined by

 zk+1 = zk
2 + z0, k = 1, 2, …

FIGURE 1. Sketch of Mandelbrot set geometry. FIGURE 2. Valley of the Seahorses.

remain bounded. That’s it. That’s the entire definition. It’s amazing
that such a simple definition can produce such fascinating com-
plexity. It has stimulated deep research in mathematics and has
been the basis for numerous graphics projects, hardware demos,
and web pages.

Figure 1 is a sketch of the geometry of the Mandelbrot set. The largest
component is a heart-shaped cardioid, bounded by a curve with the
parametric equation

 z = eit⁄2 – e2it⁄4 , -π ≤ t ≤ π

To the left of the cardioid is a circular disc of radius ¼. The cardioid
and the disc touch at the point marked by the red dot. 	

More about that red dot later.

I am a fractals addict. And I now have a GPU that is enabling my addiction.
GPUs were originally intended to speed up graphics, but MATLAB® uses
them to speed up computation. Fractals are graphics that require exten-
sive computation. Perfect candidates for a GPU.

The GPU has renewed my interest in the Mandelbrot set itself and facil-
itated work with three fractal variants: the “Burning Ship,” the “tower
of powers,” and the global convergence behavior of Newton’s method.

https://www.mathworks.com/company/newsletters/news_notes/2019.html

MathWorks News&Notes 2928 mathworks.com/news-notes

number of miniature Mandelbrots, each with the same shape as the
big one. The one shown in Figure 3 has a magnification factor of 1010.

Buried π
A remarkable result was discovered in 1991 by Dave Boll, then a
graduate student at Colorado State University. Boll was investigat-
ing the behavior of the Mandelbrot iteration in the Valley of the
Seahorses. The valleys become narrower as they approach the axis,
which they meet at (-3/4,0), the red dot in Figure 1.

We can repeat Boll’s computation on a small grid centered just off
the axis at the point -3/4 + yi for a tiny value of y and imaginary
unit i.

 y = 1.0e-07

 zc = -3/4 + y*i

Make the grid just large enough to touch the axis.

 width = 2*y

 grid = 4

Choose depth to be inversely proportional to y, which makes
it huge.

 depth = 4/y

With these parameters, run the code above. It produces
kz =

40000000 40000000 40000000 40000000 40000000

40000000 40000000 40000000 40000000 40000000

40000000 40000000 31415926 40000000 40000000

40000000 40000000 20943951 40000000 40000000

40000000 40000000 15707963 40000000 40000000

Look at the iteration count in the center of the grid. See a familiar
value?

This isn’t a fluke. A 2001 paper by Aaron Klebanoff, “π in the
Mandelbrot Set,” analyzes a similar computation in the cusp at the
front of the cardioid.

Next, a curious variant of the Mandelbrot iteration.

The Burning Ship
The Burning Ship comes from a strange iteration:

 zk+1 = F(zk) + z0, k = 1, 2, …

where

 F(z) = (|Re(z)| + i |Im(z)|)2

I say this is strange because the function F(z) is not analytic. I am
interested in this iteration because of the uncanny similarities in the
following pictures.

The initial domain, shown in Figure 4, is a square of width 3.5 cen-
tered at -0.5-0.5i. I’ve inserted an arrow pointing to the region of
interest in the wake of the ship.

Zoom in on the ship’s wake by a factor of 500 to the point
-1.861-.002i. Apply the bone colormap to make it appear cold
instead of burning. Figure 5 shows the resulting fractal next to a
1915 photograph of Antarctic explorer Ernest Shackleton’s ship
Endurance frozen in the ice in the Weddell Sea.

Tower of Powers
Start with any complex number, z, and repeatedly exponentiate it.

 z,zz,zzz,zzzz
, . . .

We can express this as an iteration. Start with y0 = 1 and let

 yk+1=zyk

If z is too big, this iteration will blow up to infinity. For some z, it will
converge to a finite limit. For example, if z = √2, the yk will converge
to 2. The most interesting case is when yk approaches a cycle. For
example, if z is near 2.5+4i, the cycle has length 7.

 2.4684 + 4.0754i

 -0.6216 + 0.3634i

 0.2603 - 0.0184i

 1.4868 + 0.3613i

 -3.4877 + 6.1054i

 7.7632e-06 - 2.6617e-06i

 1.0000 + 0.0000i

 2.4684 + 4.0755i

This cycle length is the basis for the “tower of powers” fractal. Fig-
ure 6 shows the overall fractal.

Zooming in by a factor of 105 and changing the colormap produces
the image shown in Figure 7.

FIGURE 3. Miniature Mandelbrot. FIGURE 4. Burning ship, initial domain.
FIGURE 5. Left: zoomed-in view of the Burning Ship’s wake. Right: Hurley’s 1915 photograph of Shackleton’s
ship frozen in ice in Antarctica.2 Photo credit: Frank Hurley, National Library of Australia, nla.gov.au/nla.obj-
158931586/view.

FIGURE 6. Tower of powers fractal.

FIGURE 7. Detail of tower of powers fractal.

https://www.mathworks.com/company/newsletters/news_notes/2019.html

30 mathworks.com/news-notes

Newton’s Method
When the starting point of Newton’s method is not close to a zero
of the function, the global behavior can appear to be unpredictable.
Contour plots of iteration counts to convergence from a region of
starting points in the complex plane generate thought-provoking
fractal images.

The iteration is familiar. Pick a function f(z) with derivative f '(z).
Start at z0 and let

 zk+1 = zk – f(zk)/f '(zk)

This will eventually converge to a zero of f. Count the number of
iterations it takes to get close.

There are many functions (and colormaps) to choose from. My fa-
vorite cubic polynomial is

 f(z) = z3 – 2z – 5

Figure 8 shows the complex plane divided into three regions where
the iteration converges to one of the three zeroes of the cubic. Be-
tween these regions are areas of intense fractal action, shown in
black in the figure.

Figure 9 shows the global behavior of Newton’s method seeking the
zeroes of

 f(z) = tan(sin(z)) – sin(tan(z))

The function has infinitely many zeroes and an unbounded first de-
rivative.

The function for Figure 10 is

 f(z) = z sin(1/z)

The most prominent blue regions surround the zeroes at ±1/π.

Many of the images described here were new to me—I’d never
seen them before. Interactive experiments with the GPU made
them possible. ◆

References
Aaron Klebanoff, “π in the Mandelbrot Set,” Fractals, World Sci-
entific Publishing Company, vol. 9, 2001. http://www.pi-e.de/PDF/
mandel.pdf

Frank Hurley, 1915, The long, long night [the Endurance in the
Antarctic winter darkness, trapped in the Weddell Sea, Shackle-
ton expedition, 27 August 1915], National Library of Australia,
http://nla.gov.au/nla.obj-158931586

FIGURE 8. Newton’s iteration on z3 – 2z – 5.

FIGURE 9. Detail from Newton’s iteration on
tan(sin(z)) – sin(tan(z)).

FIGURE 10. Detail from Newton’s iteration on z sin(1/z).

https://www.mathworks.com/company/newsletters/news_notes/2019.html

MathWorks News&Notes 31

Ettus Research/National
Instruments: USRP Hardware

The USRP® product line includes tunable
transceivers with frequencies from DC to
6 GHz for designing, prototyping, and
deploying radio communication systems.
The USRP Bus Series is best for low-cost
experimentation, while the USRP Networked
Series, USRP X Series, and standalone
USRP devices are designed for prototyping
more sophisticated systems. In addition, the
USRP Embedded Series is ruggedized for
field deployment. With Communications
Toolbox and USRP hardware support
packages, engineers can use USRP radios
as peripherals for importing live RF data
I/O into MATLAB. They can generate code
with HDL Coder™ for deployment on select
USRP Embedded Series devices.

ni.com/usrp
ettus.com

Xilinx: Zynq UltraScale+ RFSoC

Xilinx® Zynq® UltraScale+™ RFSoC integrates
multi-gigasample RF data converters with
the UltraScale architecture. With full support
for sub-6GHz bands, it is designed for the
latest wireless infrastructure standards and
for a range of test and measurement, radar,
and other high-performance, multichannel
applications. Engineers can stream RF data
into and out of MATLAB and Simulink to
test designs under real-world conditions.
To prototype and deploy custom designs,
they can target Zynq UltraScale+ RFSoCs
with HDL Coder and Embedded Coder®.
With Avnet® RFSoC Explorer software they
can characterize RF performance using
waveforms from 5G Toolbox™, WLAN
Toolbox™, and LTE Toolbox™ or custom
waveforms.

xilinx.com/rfsoc

Analog Devices: PlutoSDR

The ADALM-PLUTO Active Learning Module
(PlutoSDR) is a platform for engineers to
learn wireless and SDR fundamentals and
experiment with SDR communications
schemes. PlutoSDR includes the Analog
Devices® RF Agile Transceiver (AD9363) and
the Xilinx Zynq Z-7010 all-programmable
FPGA. The transceiver features an RF front
end, a flexible mixed-signal baseband, and
integrated frequency synthesizers to provide
tunable operation (70 MHz to 6.0 GHz)
with channel bandwidths from 200 kHz
to 56 MHz. A Communications Toolbox™
add-on package enables engineers to
prototype, verify, and test practical wireless
systems such as FM radio and WLAN signals
on PlutoSDR under real-world conditions.

analog.com/plutosdr

THIRD-PARTY PRODUCTS

Solutions for Developing Wireless Systems
with MATLAB and Simulink
Wireless hardware platforms integrated with MATLAB® and Simulink® enable engineers, hobbyists, and students to move
from theory to prototyping designs and deploying production systems. Radio frequency (RF) transceivers support a range of
frequencies and modulation schemes. Programmable software-defined radio (SDR) hardware kits facilitate experimentation
with new communication methods. New integrated system-on-chip (SoC) devices combine programmable controllers with RF
converters, enabling engineers to design and deploy 5G, LTE, WLAN, and other wireless systems on a single chip.

Software-Defined Radio Resources: mathworks.com/sdr

http://www.ni.com/usrp
http://www.ettus.com
http://www.xilinx.com/rfsoc
http://www.analog.com/plutosdr
https://www.mathworks.com/discovery/sdr.html

A BRIEF GUIDE TO
REINFORCEMENT
LEARNING
By Emmanouil Tzorakoleftherakis,
MathWorks

Reinforcement learning has the potential to
solve tough decision-making problems in
many applications, including industrial
automation, autonomous driving,
video game playing, and robotics.

MathWorks News&Notes 33

In reinforcement learning, a type of machine learning, a computer
learns to perform a task through repeated interactions with a dynam-
ic environment. This trial-and-error learning approach enables the
computer to make a series of decisions without human intervention
and without being explicitly programmed to perform the task. One
famous example of reinforcement learning in action is AlphaGo, the
first computer program to defeat a world champion at the game of Go.

Reinforcement learning works with data from a dynamic environ-
ment—in other words, with data that changes based on external con-
ditions, such as weather or traffic flow. The goal of a reinforcement
learning algorithm is to find a strategy that will generate the optimal

outcome. The way reinforcement learning achieves this goal is by al-
lowing a piece of software called an agent to explore, interact with,
and learn from the environment.

An Automated Driving Example

One important aspect of automated driving is self-parking. The goal
is for the vehicle computer (agent) to position the car in the correct
parking spot and with the correct orientation. In this example, the
environment is everything outside the agent—the dynamics of the
vehicle, nearby vehicles, weather conditions, and so on. During
training, the agent uses readings from cameras, GPS, lidar, and oth-
er sensors to generate steering, braking, and acceleration commands
(actions). To learn how to generate the correct actions from the ob-
servations (policy tuning), the agent repeatedly tries to park the vehi-
cle using trial and error. The correct action is rewarded (reinforced)
with a numerical signal (Figure 1).

In this example, training is supervised by a training algorithm. The
training algorithm is responsible for tuning the agent’s policy based
on the collected sensor readings, actions, and rewards. After training,
the vehicle’s computer should be able to park using only the tuned
policy and the sensor readings.

Algorithms for Reinforcement Learning

Many reinforcement learning training algorithms have been de-
veloped to date. Some of the most popular algorithms rely on deep
neural networks. The biggest advantage of neural networks is that
they can encode complex behaviors, making it possible to use rein-
forcement learning in applications that would be very challenging to
tackle with traditional algorithms.

For example, in autonomous driving, a neural network can replace
the driver and decide how to turn the steering wheel by simultane-
ously looking at input from multiple sensors, such as camera frames
and lidar measurements (Figure 2). Without neural networks, the
problem would be broken down into smaller pieces: a module that
analyzes the camera input to identify useful features, another mod-
ule that filters the lidar measurements, possibly one component that
would aim to paint the full picture of the vehicle’s surroundings by
fusing the sensor outputs, a “driver” module, and so on.

Reinforcement Learning Workflow

Training an agent using reinforcement learning involves five steps:

1.	Create the environment. Define the environment within which the
agent can learn, including the interface between agent and envi-
ronment. The environment can be either a simulation model or a
real physical system. Simulated environments are usually a good
first step since they are safer and allow experimentation.

2.	Define the reward. Specify the reward signal that the agent uses to
measure its performance against the task goals and how this signal
is calculated from the environment. Reward shaping may require a
few iterations to get right.

3.	Create the agent. The agent consists of the policy and the training
algorithm, so you need to:

•	 Choose a way to represent the policy (for example, using neural
networks or lookup tables). Consider how you want to structure
the parameters and logic that make up the decision-making part
of the agent.

•	 Select the appropriate training algorithm. Most modern rein-
forcement learning algorithms rely on neural networks because
they are good candidates for large state/action spaces and com-
plex problems.

The goal of a reinforcement
learning algorithm is to find a
strategy that will generate the

optimal outcome.

AGENT

ENVIRONMENT

Reinforcement
Learning
Algorithm

Policy
Observation Action

Reward

FIGURE 1. Reinforcement learning overview.

MathWorks News&Notes 3534 mathworks.com/news-notes

4.	Train and validate the agent. Set up training options (such as stop-
ping criteria) and train the agent to tune the policy. The easiest way
to validate a trained policy is through simulation.

5.	Deploy the policy. Deploy the trained policy representation using,
for example, generated C/C++ or CUDA code. No need to worry
about agents and training algorithms at this point—the policy is a
standalone decision-making system.

An Iterative Process

Training an agent using reinforcement learning involves a fair
amount of trial and error. Decisions and results in later stages can
require you to return to an earlier stage in the learning workflow.
For example, if the training process does not converge to an optimal
policy within a reasonable amount of time, you may have to update
any of the following before retraining the agent:

•	 Training settings

•	 Learning algorithm configuration

•	 Policy representation

•	 Reward signal definition

•	 Action and observation signals

•	 Environment dynamics

Researchers from the University of Southern California’s
Valero Lab built a simple robotic leg that taught itself how
to move in just minutes using a reinforcement learning algo-
rithm written in MATLAB® (Figure 3).

The three-tendon, two-joint limb learns autonomously, first
by modeling its own dynamic properties and then by using
reinforcement learning.

For the physical design, this robotic leg used a tendon ar-
chitecture, much like the muscle and tendon structure that
powers animals’ movements. Reinforcement learning then
used the understanding of the dynamics to accomplish the
goal of walking on a treadmill.

Reinforcement Learning and
“Motor Babbling”
By combining motor babbling with reinforcement learning,
the system attempts random motions and learns properties
of its dynamics through the results of these motions. For
this research, the team began by letting the system play at
random, or motor babble. The researchers give the system a
reward—in this case, moving the treadmill forward—every
time it performs a given task correctly.

The resulting algorithm, called G2P (general to particu-
lar), replicates the general problem that biological nervous
systems face when controlling limbs by learning from the
movement that occurs when a tendon moves the limb (see
page 36). It is followed by reinforcing (rewarding) the behav-
ior that is particular to the task. In this case, the task is suc-
cessfully moving the treadmill. The system creates a general
understanding of its dynamics through motor babbling and
then masters a desired “particular” task by learning from ev-
ery experience, or G2P.

The neural network, built with MATLAB and Deep Learning
Toolbox™, uses the results from the motor babbling to create
an inverse map between inputs (movement kinematics) and
outputs (motor activations). The network updates the mod-
el based on each attempt made during the reinforcement
learning phase to home in on the desired results. It remem-
bers the best result each time, and if a new input creates a
better result, it overwrites the model with the new settings.

The G2P algorithm can learn a new walking task by itself
after only 5 minutes of unstructured play. It can then adapt
to other tasks without any additional programming.

AGENT

Input
Layers Hidden Layers (n)

- TURN LEFT
- TURN RIGHT
- BRAKE
- ACCELERATE

When Is Reinforcement Learning the
Right Approach?

While reinforcement learning is a major advance in machine learn-
ing, it is not always the best approach. Here are three issues to bear in
mind if you are considering trying it:

•	 It is not sample-efficient. This means that a lot of training is re-
quired to reach acceptable performance. Even for relatively sim-
ple applications, training time can take anywhere from minutes to
hours or days. AlphaGo was trained by playing millions of games
nonstop for several days, accumulating thousands of years’ worth
of human knowledge.

•	 Setting up the problem correctly can be tricky; many design deci-
sions need to be made, which may require several iterations to get
right. These decisions include selecting the appropriate architec-
ture for the neural network, tuning hyperparameters, and shaping
the reward signal.

•	 A trained deep neural network policy is a “black box,” meaning
that the internal structure of the network is so complex (often con-
sisting of millions of parameters) that it is almost impossible to
understand, explain, and evaluate the decisions taken. This makes
it difficult to establish formal performance guarantees with neural
network policies.

If you are working on a time- or safety-critical project, you might
want to try some alternative method. For example, for control design,
using a traditional control method would be a good way to start.

FIGURE 3. Valero Lab’s new robotic limb.
Image credit: USC.

FIGURE 2. Neural network for autonomous driving.

Real-World Example: Robot Teaches Itself to Walk

MathWorks News&Notes 35

https://www.mathworks.com/company/newsletters/news_notes/2019.html

36 mathworks.com/news-notes

Image credit: Marjaninejad, et al.

36 mathworks.com/news-notes

The G2P Algorithm

https://www.mathworks.com/company/newsletters/news_notes/2019.html
https://www.mathworks.com/company/newsletters/news_notes/2019.html

Image courtesy Kevin R. Coffey, Russell G. Marx, and John F. Neumaier.

University of Washington researchers have
developed software that uses deep learning
to detect and analyze the ultrasonic
vocalizations (USVs) of rats. Inaudible to
the human ear, USVs are an invaluable
source of insight into the rat’s state of
mind. By observing lab rats’ responses to
various stimuli, researchers hope to better
understand how drugs change brain activity
so as to devise more effective treatments for
anxiety disorders, depression, and addiction
in humans.

Rat calls are at such a high frequency
that even with specialized microphones,
recordings must be slowed down to make
them audible. Manually tagging and
categorizing the slowed-down USVs is
labor-intensive and error-prone.

DeepSqueak software automates this
laborious process by turning an audio
problem into a visual problem. It translates
raw audio files into filtered sonograms
that are fed into a convolutional neural
network (CNN) as labeled samples
of vocalizations and noise. Biomimetic
algorithms in DeepSqueak learn to classify
the vocalizations and detect patterns, such
as the order of squeaks and their duration.

Deep

Learning
Deciphers

What Rats
Are Saying

Power Electronics Control Design

Start in Simulink
GO ANYWHERE
Design power electronics controls, validate with
simulation, and generate code for your target
hardware:

•	 Model with hundreds of ready-to-use electrical
modeling components

•	 Perform rapid prototyping and HIL simulation
with multiple real-time hardware platforms

•	 Get to code 50% faster than hand coding
by automatically generating readable, compact
C and HDL code for any microcontroller,
FPGA, or SoC

Get started in Simulink®.

mathworks.com/pec

93187v00 10/19© 2019 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks
for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/solutions/power-electronics-control.html

