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Oversteering is an unsafe condition in which 
a vehicle’s rear tires lose their grip while 

navigating a turn (Figure 1). It can be caused 
by worn tires, slippery road conditions, taking a 
turn too fast, braking abruptly while turning, or a 
combination of these factors.

Modern stability control systems are designed 
to automatically take corrective action when 
oversteer is detected. In theory, such systems 
can identify an oversteering condition by using 
mathematical models based on first principles. 
For example, when measurements from onboard 
sensors exceed established threshold values for 
parameters in the model, the system determines 
that the car is oversteering. In practice, however, 
this approach has proved difficult to implement 
because of the interplay of the many factors in-
volved. A car with underinflated tires on an icy 
road might need vastly different threshold val-
ues than the same car operating with properly 
inflated tires on a dry surface.

At BMW, we are exploring a machine learning 
approach to detecting oversteering. Working in 
MATLAB®, we developed a supervised machine 
learning model as a proof of concept. Despite 
having little previous experience with machine 
learning, in just three weeks we completed a 
working ECU prototype capable of detecting 
oversteering with over 98% accuracy.

Today, a single vehicle can generate a  
terabyte of measured data in a day.  

Machine learning provides an opportunity  
to develop software that uses the available  
data to learn about a driver’s behavior and  

improve the driving experience.

OVERSTEERING
Detecting Oversteering in BMW Automobiles  
with Machine Learning
By Tobias Freudling, BMW Group
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Collecting Data and Extracting Features

We began by gathering real-world data from a vehicle before, during, 
and after oversteering. With the help of a professional driver, we con-
ducted live driving tests in a BMW M4 at the BMW proving grounds 
in Miramas, France (Figure 2).

During the tests, we captured signals commonly used in oversteer 
detection algorithms: the vehicle’s forward acceleration, lateral accel-
eration, steering angle, and yaw rate. In addition, we logged the driv-
er’s perception of oversteering: When the driver indicated the car was 
oversteering, my colleague, riding in the car as a passenger, pressed 
a button on her laptop. She released the button when the driver in-
dicated the car had returned to handling normally. These button 
presses created the ground-truth labels we need to train a supervised 
learning model. Altogether, we captured about 259,000 data points in 
43 minutes of recorded data.

Back in our Munich office, we loaded the data that we had collected 
into MATLAB and used the Classification Learner app in Statistics 
and Machine Learning Toolbox™ to train machine learning models 
using a variety of classifiers. The results produced by models trained 
on this raw data were not outstanding—the accuracy was between 
75% and 80%. To achieve more accurate results, we cleaned and re-
duced the raw data. First, we applied filters to reduce noise on the 
signal data (Figure 3).

Next, we used peak analysis to identify the peaks (local maxima) on 
our filtered input signals (Figure 4).

Evaluating Machine Learning Approaches

After filtering and reducing the collected data, we were in a better 
position to evaluate supervised machine learning approaches. Using 
the Classification Learner app, we tried k-nearest neighbor (KNN) 
classifiers, support vector machines (SVMs), quadratic discriminant 
analysis, and decision trees. We also used the app to see the effect of 
transforming features through principal component analysis (PCA), 
which helps prevent overfitting.

The results produced by the classifiers that we evaluated are sum-
marized in Table 1. All the classifiers performed well in identifying 
oversteer, with three producing true positive rates above 98%. The 
deciding factor was the true negative rates: how accurately the clas-
sifier was able to determine when the vehicle was not oversteering. 
Here, decision trees outperformed the other classifiers, with a true 
negative rate of almost 96%.

Generating Code for  
In-Vehicle Tests

The results produced by the decision tree 
were promising, but the true test would 
be how well the classifier performed on an 
ECU in a real car. We generated code from 
the model with MATLAB Coder™ and com-
piled the code for our target ECU, installed 
in a BMW 5 Series sedan. This time, we 
conducted the tests ourselves at a BMW fa-
cility near Aschheim, close to our office. As 
I drove, my colleague collected data, record-
ing the precise times when I indicated that 
the car was oversteering. 

Running in real time on the ECU, the clas-
sifier performed surprisingly well, with an 
accuracy rate of about 95%. Going into the 
tests, we had not known what to expect be-
cause we were using a different vehicle (a 
BMW 5 Series instead of an M4), a different 
driver, and a different track. A closer look 
at the data revealed that most of the mis-

True Positive (%) True Negative (%) False Positive (%) False Negative (%)

K-Nearest Neighbor with PCA 94.74 90.35 5.26 9.65

Support Vector Machine 98.92 73.07 1.08 26.93

Quadratic Discriminant Analysis 98.83 82.73 1.17 17.27

Decision Trees 98.16 95.86 1.84 4.14

FIGURE 4. The steering angle signal with peaks identified.FIGURE 3. The original steering angle signal (blue) and the same 
signal after filtering (orange).

TABLE 1. Summary of results for four different supervised machine learning classifiers.

FIGURE 2. The BMW proving grounds in Miramas, France.

FIGURE 1. Oversteering a BMW M4 on a test track.

matches between the model and the driver’s perceived oversteering 
occurred near the beginning and end of the oversteering condition. 
This mismatch is understandable; it can be difficult even for a driver 
to determine exactly when oversteer has started and stopped.

Having successfully developed a machine learning model for over-
steering detection and deployed it on a prototype ECU, we are now 
envisioning numerous other potential applications for machine 
learning at BMW. Vast amounts of data collected over decades are 
available to us, and today, a single vehicle can generate a terabyte of 
measured data in a day. Machine learning provides an opportunity to 
develop software that uses the available data to learn about a driver’s 
behavior and improve the driving experience. ◆

All the classifiers performed well in 
identifying oversteering, with three producing 
true positive rates above 98%. The deciding 

factor was the true negative rates ... 
here, decision trees outperformed the other 

classifiers, with a rate of almost 96%.
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By Daniele Pucci, Diego Ferigo, and  
Silvio Traversaro, Istituto Italiano di Tecnologia (IIT)

DEVELOPING ADVANCED 
CONTROL SOFTWARE FOR 
THE iCUB HUMANOID ROBOT

The iCub project was launched in 2004 as part of the RobotCub  
European Project, whose main aim was to study embodied cogni-
tion—the theory that an organism develops cognitive skills as it in-
teracts with its environment. The main outcome of the iCub project 
is a 1-meter-tall, 53-degrees-of-freedom humanoid currently being 
developed at the Italian Institute of Technology (IIT). Over the years, 
the iCub robot has been used as a research platform for diverse fields 
of applied robotics, including balancing, teleoperated walking, and 
human-robot collaboration (Figure 1). 

iCub is equipped with more than 50 motors, as well as force-torque 
sensors, inertial measurement units, and dozens of encoders and ac-
celerometers. Developing control algorithms for a robot this com-
plex is a difficult challenge. Our team at IIT—the Dynamic Interac-
tion Control team—has created a development workflow based on  
Simulink® and Simulink Coder™ that makes it possible for even inex-
perienced team members to rapidly implement new control features, 
validate them through simulation, and run them on an iCub robot 
without writing any low-level code. 

PROTOTYPING iCUB CONTROLLERS 
We prototype our control software using Simulink and the open-
source Whole Body Toolbox, developed at IIT. Whole Body Toolbox 
is based on the BlockFactory dataflow framework, which we creat-
ed to provide C++ interfaces for dataflow programming. We begin 
by modeling the controller in Simulink, incorporating sensors, ac-
tuators, and commonly used robotic algorithms. The Whole Body  
Toolbox then creates interfaces to either the real or the simulated 
iCub (Figure 2).

We use the Whole Body Toolbox most frequently for applications 
involving dynamic balancing. The robot controller regulates the con-
tact forces between the robot and the environment, enabling the ro-
bot to maintain its balance even if pushed or otherwise perturbed by 
a human. As a secondary task, the robot tries to maintain a posture 
selected by the human: the robot automatically filters out any posture 
that alters its balance and stability.

We cosimulate the control model in Simulink with a model of iCub 
in the Gazebo robotics simulator (Figure 3). Cosimulation enables us 
to fix defects before testing on the actual robot, minimizing the risk 
of damaging the robot or endangering a human. For example, with 
our cosimulation setup we can determine whether a given set of gains 
creates unstable behavior in the robot in the event of unplanned fast 
movements.

iCub streams measurements coming from sensors at 100 Hz. These 
measurements are published over the network by our robotic mid-
dleware YARP.

Once we have validated the controller via simulations, we test it on a 
real iCub in the lab. In our test setup, Simulink runs on a PC with a 
standard x86 processor and communicates with the iCub via YARP 
middleware and TCP/UDP. The controller running in Simulink 
sends torque commands to the robot, which is able to follow a trajec-
tory while maintaining its balance. A real-time synchronizer block, 
developed for the Whole Body Toolbox, synchronizes the robot mov-
ing in the real world with the control model.

FIGURE 1. Clockwise from top left: iCub shooting arrows, striking a yoga pose, walking while controlled via teleoperation, and working with a 
human to stand up.
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DEPLOYING THE CONTROLLER 
Our over-the-network configuration is convenient for rapid design 
iterations, but it leaves iCub reliant on the TCP/UDP communica-
tion link. To break this reliance and enable iCub to operate more in-
dependently, we deploy our controller to an x86 processor inside the 
robot’s head, eliminating the need for network communication, with 
the associated latency and risk of communication errors. 

We generate C++ code from our control models with Simulink Coder, 
 compile it, and validate it using the same over-the-network configu-
ration that we used earlier when running the controller in Simulink. 
Then, we run the code on the x86 processor mounted inside iCub’s 
head, enabling iCub to operate as a single unit rather than on a sep-
arate control PC.

PORTABLE CONTROL DESIGN 
Today, about 40 iCub robots are in use by re-
search groups around the world. Although 
the hardware designs vary, every version can 
use the same controller design. This porta-
bility is made possible by a configuration 
block within our Simulink control mod-
el that loads a Unified Robot Description  
Format (URDF) file describing the kinemat-
ics and dynamics of each robot. Using this 
configuration file, we can run the same con-
troller on IIT’s 120-kilogram, 1.85-meter- 
tall simulated WALK-MAN as on a 33-kilo-
gram, 1-meter-tall iCub.

LOOKING AHEAD
We are confident that our research will re-
sult in many real-world applications. For 
example, in the future, telexistence could 
be used to help the physically disabled per-
form tasks requiring strength or dexterity. 
In these cases, a robotic avatar would move 
and act in the physical world, remotely con-
trolled by the disabled human. 

Our research on agent-robot collaboration 
is fundamental to creating robots to help 
humans at home and in the workplace—for 
example, assisting the elderly with activities 
of daily living and helping factory workers 
perform tasks involving muscular skeletal 
stress. Finally, the new branch of robotics 
that we are pioneering, aerial humanoid 
robotics, has a multitude of applications. 
Jet-powered, heavy-payload aerial plat-
forms can be derived from flying humanoid 
robots for drug and food delivery during di-
saster response, heavy-payload last-mile de-
livery, and rescue platforms for firefighters, 
as well as platforms for humans performing 
high-voltage pylon inspection. 

To translate the results of our research 
into real applications, we work closely 
with the iCub facility that develops, main-
tains, and continuously updates the iCub  
humanoid robot. ◆

FIGURE 3. Cosimulating a simple control model in Simulink with a physical model of 
iCub in Gazebo.

FIGURE 2. Blocks in the Whole Body Toolbox. 

Robot-robot collaboration. 

The IIT iCub project includes several lines of research. 
The Dynamic Interaction Control team focuses on 
three areas: telexistence, agent-robot collaboration 
(with the agent being either a human or another hu-
manoid robot), and aerial humanoid robotics.

Telexistence enables a human to exist virtually in 
another location via a robotic avatar. In our experi-
ments, the iCub walks and manipulates objects in the 
real world while the human walks and manipulates 
objects in a virtual environment. When the human 
takes a step, we process the human motion and a 
reference signal is sent to the iCub, causing it to take 
a step. Similarly, when the human closes a hand, a 
signal is sent to cause the iCub’s hand to close. 

Our research into agent-robot collaboration centers 
on ways that humans and robots can work together. 
In one of our experiments, a human helps the iCub to 
stand from a sitting position. The human wears a spe-
cially designed suit that provide real-time kinematics 
and dynamics data, enabling us to track and model 
the human’s movements and muscular stresses while 
tracking the robot’s movements in Simulink. We re-
cently extended the human-robot collaboration ex-
periment with a robot-robot collaboration version in 
which one iCub helps a second iCub to stand.

Aerial humanoid robotics is one of our most active 
research areas. We are working on a version of iCub 
that will be equipped with jetpacks. It will be able to 
fly to a specified location, land, and begin walking 
and interacting with the environment. A robot with 
these capabilities would be useful in high-risk disas-
ter and search-and-rescue scenarios, such as earth-
quakes, floods, or wildfires. In these situations, the 
value of having robots able to fly from one building 
to another looking for survivors, open doors, close 
gas valves, and enter buildings is incalculable. 

A simulated iCub equipped with jetpacks during  
inspection maneuvers in a disaster-like scenario. 

Redesign of the iCub humanoid  
robot with jetpack.

iCUB RESEARCH AT IIT

https://www.mathworks.com/company/newsletters/news_notes/2019.html
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a solution to the nonlinear optimization problem and pass this on 
to Simulink to visualize how this solution will perform in different 
practical scenarios.

Dynamic Optimizations in Simulink
For the next assignments, the students learn how to solve dynam-
ic optimization problems in Simulink, reworking their initial  
MATLAB solutions to handle parameters that vary over time. In the 
farming problem, for example, instead of assuming a constant rate of 
rainfall based on a seasonal average, the students must now consider 
rainfall amounts that vary day by day. They develop Simulink models 
in which rainfall, wind speed, cloud cover, and other environmen-
tal variables are simulated using randomly generated values within 
a predetermined range (Figure 2). They incorporate the MATLAB 
code from the earlier assignment as user-defined function blocks, 
and then refine the code and model until they find a solution that 
works for different sets of dynamic conditions.

To develop their models, students must first build individual compo-
nents and then figure out how to combine them into a complete sys-
tem. I encourage them to test early and frequently rather than wait-
ing until the entire system is assembled. I also show them how they 
can use Simulink Scope blocks to plot signals at any point in their 
model and trace errors back through the system, just as an engineer 
would when debugging a real-world system.

Working Like Engineers
While I encourage students to complete as much of the final assign-
ment as they can by themselves, I also allow them to work in groups. 
Even if they choose to work together, however, every student must 
hand in their own assignment and be able to explain to me how each 
line of MATLAB code works. I tell my students that it is perfect-
ly acceptable to incorporate partial solutions from others as long as 
you fully understand those solutions and how they operate. Some 
instructors do not agree with allowing students to include the work 
of their classmates, but I believe that my approach reflects the way 
engineers work in the real world—most engineers have neither the 
time nor the resources to solve every problem from scratch.  

MATLAB for Advanced Projects
I recently began teaching a fourth-year course on data analytics in 
which students use MATLAB to complete more advanced assign-
ments. I based these assignments on my own research and on thesis 
papers written by my postgraduate students. I broke down the data 
analysis into three stages. In the first stage, students perform sim-
ple statistical explorations and visualizations of the data. Next, they 
apply statistical measures to see how various subsets of data differ 
from one another. Finally, they build regression, neural network, and 
decision tree models and use them to make predictions based on 
the data. 

Helping Students to Work and Think Like Engineers
By Alwyn Hoffman, North-West University

FIGURE 1. GUI created by a student in MATLAB.

Beyond Algorithms  
and Optimization

The students had six weeks to complete their examination assign-
ments. In the first few weeks, one student visited me several times 
during office hours with questions about how to proceed. I found 
out that this student shared what he had learned from me with his 
classmates—he was acting as a kind of senior engineer or lead engi-
neer working with junior engineers on a real project. Almost every 
student in the class completed their assignments and did well. 

These results confirmed to me, and proved to them, a core principle 
for today’s engineers: You can think through and solve difficult en-
gineering problems when you have the right tools and know how to 
use them. ◆

FIGURE 2. Student-created Simulink model for optimizing farm  
crop selection.

Undergraduate engineering students are capable of solving much 
more complex problems than we give them credit for. I found this 
to be true in my Algorithms and Optimization course, where stu-

dents solve optimization problems that require them to deter-
mine what tradeoffs have to be made to satisfy conflicting 

requirements and arrive at a viable solution. 

While the problems I assign can be readily understood—
for example, helping a farmer decide what crops to 
plant to maximize profits—they are too complex to 

solve analytically without an appropriate toolset. Stu-
dents must integrate the concepts they’ve learned in 
first-year engineering courses with programming 
skills to develop a mathematical solution, trans-
late it into code or a model, and then display and 
interpret the results.

MATLAB® and Simulink® make it possible 
for students to tackle problems of this com-
plexity in one semester. Instead of focus-
ing on low-level implementation details 
at the component level, they can use 
built-in functions and blocks to devel-

op solutions that would take them up 
to 10 times longer in languages like 
Python, C, or C#. 

Introducing Programming in MATLAB
Students in Algorithms and Optimization have already taken intro-
ductory programming, but most are new to MATLAB. To familiar-
ize them with the MATLAB language and development environ-
ment, the first assignment asks them to build a simple user interface  
(Figure  1). The interface incorporates animated, multicolor graphs 
of sample data, which engage the students more than static charts. 
The entire exercise gives them confidence in their ability to build an 
application—one they at first thought complicated—by following a 
straightforward process. 

The first major assignment is a nonlinear optimization problem to 
be solved in MATLAB. In each of the three years that I’ve taught 
the course, I’ve presented a different problem. This year, it was the 
farming problem: The students had to determine how much land 
should be allocated to each of two crops to maximize profits, given 
an expected amount of rainfall and electricity costs to run irrigation 
pumps. Last year, the students had to optimize an energy manage-
ment system to find the optimal mix of grid, solar, and wind power 
production. The year before that, I gave them a mining scenario in 
which they had to find the lowest-cost method of operating and ven-
tilating a mine with a combination of diesel- and electric-powered 
load-haul-dump (LHD) equipment and ventilation fans.

Each of these scenarios is easy to understand conceptually, but 
none has an obvious mathematical solution. Students first translate 
the verbal description of the problem into a set of equations. They 
must then determine which nonlinear programming techniques to 
use and implement a solution in MATLAB. Finally, they generate 
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FIGURE 2. Visualization of lookup table resulting from  
parameter estimation showing internal resistance as a  
function of state-of-charge and temperature.BATTERY DESIGN

Modeling and Simulating Battery Performance  
for Design Optimization
By Cecilia Wang, Romeo Power

FIGURE 1. An isothermal 3-RC equivalent circuit developed for parameter estimation  
using Simscape blocks. Em = open-circuit voltage, R = resistance, and C = capacitance.

At Romeo Power, we design our battery 
packs and battery technology to enable our 
customers to produce more efficient elec-
tric vehicles and implement scalable ener-
gy storage systems. Before they select one 
of our battery packs for their next product, 
our customers need to know how the pack 
will perform under the full range of expect-
ed operating conditions, including various 
temperatures and states of charge. Assessing 
battery pack performance using hardware 
prototypes can be both slow and costly, so 
we rely on simulation to ensure that we min-
imize hardware testing.

Modeling and simulation with MATLAB®, 
Simulink®, and Simscape™ is faster, safer, 
and less costly than building physical pro-
totypes. 

We can identify algorithms or charging methods that will work for 
a particular design without running the whole system. We can test 
scenarios that would be difficult or hazardous to test on real batter-
ies and optimize designs for specific applications and usage profiles. 
Simulation often reveals errors that are missed during system-level 
testing. In addition, our customers can use our models to evaluate 
battery packs and battery management systems for their electric  
vehicles or commercial and residential energy storage systems.

Characterizing and Modeling Individual Cells  
Using Parameter Estimation

To model a battery cell, we need to characterize its properties—how 
it performs both initially and after multiple charge-discharge cy-
cles, at various temperatures and states of charge. We run extensive 
tests, including open-circuit voltage (OCV) and hybrid pulse pow-
er characterization (HPPC) tests, using a thermal chamber to vary 
the cell temperature to cover the operating range of interest. We re-
cord changes in capacity and impedance at various states of charge 
after every aging milestone—for example, after every 200 charge- 
discharge cycles.

We import the measured data into MATLAB and perform param-
eter estimation to find open-circuit voltage, resistance, and capac-
itance values for an equivalent circuit model, which we build in  
Simulink using Simscape voltage source, resistor, and capacitor blocks  
(Figure 1).  

Parameter estimation involves calculating the equivalent circuit pa-
rameters to match a simulation result to an experimental measure-
ment. We start with a given equivalent circuit topology and a set of 
initial parameter guesses. MATLAB optimization functions calculate 
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the parameter values that minimize the discrepancy between simu-
lation and experiment. These steps are repeated at all the tempera-
tures of interest to populate the lookup tables column-by-column. 
We repeat the parameter estimation using the data we collected as 
the battery aged, creating additional lookup tables for the battery at 
each age milestone. 

As a result of the beginning of life (BOL) parameter estimation, each 
equivalent circuit component will have a two-dimensional lookup 
table with columns representing temperatures and rows representing 
states of charge. Figure 2 shows an example lookup table, where the 
internal resistance R0 is shown as a function of SOC and tempera-
ture.

To verify the parameterized model, we simulate it, plot the simu-
lation results in MATLAB, and compare them with the battery test  
results (Figure 3).

Creating Multicell Models

To create a complete battery pack or module, we link individual cell 
models in a series or parallel string and then connect the strings in 
parallel or series (Figure 4).

We insert convective heat transfer blocks between individual cells 
to account for thermal effects. During simulations we monitor the 
temperature, SOC, and voltage of individual cells as well as the tem-
perature, voltage, and current of the complete module. By modifying 
the number of strings or the number of cells in each string, we can 

FIGURE 4. From top to bottom: battery pack model, strings connected in parallel, and 
individual cells connected in series.

FIGURE 5. Top: customer battery pack model. Bottom: interface for setting model parameters and  
initial conditions.

FIGURE 3. One-day, power-driven simulation for an electric 
vehicle application (based on a single cell). Top to bottom:  
simulated and measured voltage, current, and state-of-charge. 

electric vehicles, for example, may want to integrate a battery model 
with a model of the vehicle motor and run vehicle-level simulations 
for different drive profiles. 

The vehicle model, and even the drive profiles, often contain pro-
prietary information, as do our own battery models. To address this 
issue, we developed black-box versions of our battery pack mod-
els. We generated code from our original models and created new  
Simulink models based on the compiled code. Our customers have 
full control over setting up initial conditions, such as initial SOC, 
initial cell temperature, coolant temperature, and heat transfer coef-
ficients (Figure 5).

We anticipate a growing demand for safe, cost-effective, and reliable 
batteries to meet the needs of the electric vehicle industry. By model-
ing and simulating in MATLAB and Simulink we can quickly explore 
a wide range of cell configurations and optimize the system archi-
tecture in terms of performance, weight, volume, or heat dissipation 
requirements. ◆

quickly evaluate different configurations 
and identify the best one for a specific ap-
plication.

We adjust the fidelity of our models based on 
our own needs or the needs of our customer. 
We use a low-fidelity model to generate an 
initial design report for new customers who 
require a customized design, or when an ex-
isting product framework is not available for 
performing system sizing and preliminary 
analysis. We use a high-fidelity model for 
product validation, cell balancing, develop-
ing state estimation and charger control al-
gorithms, hardware-in-the-loop testing, and 
integration into a vehicle platform. 

Sharing Models with Customers

Many of our customers run their own sim-
ulations to validate sizing or to see how a 
particular battery pack will work within 
one of their designs. A company developing 

By modeling and simulating in 
MATLAB and Simulink we can 

quickly explore a wide range of 
cell configurations and optimize 

the system architecture in terms of 
performance, weight, volume, or 

heat dissipation requirements.

https://www.mathworks.com/company/newsletters/news_notes/2019.html


Underwater optical imaging has the potential to provide much higher resolution images 
than sonar. The clarity of these images, however, depends on the water quality. In turbid 
water, active illumination—used in low-light situations—causes backscatter, or the reflec-
tion of light from particles in the water back toward the camera (the same effect that makes 
it difficult to drive in fog).

To address this challenge, SINTEF worked with partners across the EU to develop UTOFIA, 
an imaging system for turbid environments. By Jens Thielemann, Petter Risholm, and Karl H. Haugholt, SINTEF

Developing an Underwater 3D Camera  
with Range-Gated Imaging

UNDERSEA IMAGING
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The UTOFIA camera delivers 3D images at 10–20 frames per second 
with a range of up to 15 meters and a resolution of one centimeter 
at depths of up to 300 meters (Figure 1). It uses range-gated imaging 
(see sidebar) to minimize the effects of backscatter and obtain range 
information for objects in its field of view (Figure 2). 

We developed algorithms to process raw data from the camera and 
produce 3D, backscatter-free images. We were working in a new do-
main, and we needed to quickly test new ideas. Thanks to the in-
tegrated environment of MATLAB®, with its strong visualization 
support, we were able to try more than 40 different approaches and 
techniques. In Python® or C++, each implementation and test would 
have taken much longer, and it is unlikely that we would have had 
time to test more than a handful.

Initial Data Analysis and Peak Detection

Unlike a standard digital camera, which produces 2D arrays of pixels, 
our camera produces 3D arrays of cubes, with the recorded value at 
each cube representing the intensity of light reflected at a specific lo-
cation in the field of view and at a specific distance from the camera. 
To extract useful images from the multigigabytes of data generated 

implemented several algorithms for reducing backscatter effects. We 
explored many alternatives here, including homomorphic filtering 
and variations over histogram equalization, finally selecting unsharp 
filtering, which also improved our 3D performance. In addition, we 
developed algorithms for camera calibration, 3D estimation, peak 
detection, and peak fitting. 

Visualizing Image Data

Once we had analyzed the data and developed 3D reconstruction 
algorithms, we needed to share the results they produced with oth-
er organizations in the UTOFIA consortium. To do this, we built a 
second MATLAB app for visualizing UTOFIA image data (Figure 5). 
This app includes controls for adjusting options and algorithm pa-
rameters, including contrast, focus, noise removal, and histogram 
equalization. Users can set these parameters and immediately see the 
effects on screen.

We packaged a standalone version with MATLAB Compiler™ and 
distributed it to our partners, who provided us with feedback and 
enhancement requests. Using MATLAB and MATLAB Compiler,  
we could implement the changes they requested in a few days.  

by the camera, our algorithms must identify the peaks in these in-
tensity values (Figure 3). External factors influence the peak posi-
tions, and the scattering in the water will introduce false peaks. This 
reduces the clarity of the resulting image and the quality of the 3D 
reconstruction.

To understand the mechanism in action, we performed extensive 
statistical analyses on the data for various water turbidities and cam-
era settings. These analyses involved building empirical models of 
backscatter, investigating the properties of forward scattering, and 
modeling detector response properties.

We also developed a MATLAB app to automate and control the data 
capture process (Figure 4). The app includes interface elements to 
control the pulse sweeps and a .NET interface that we used to config-
ure capture settings and other camera components. 

Developing Algorithms for 3D Reconstruction

The camera hardware diminishes backscatter significantly, but we 
knew that we could reduce its effects still further in software. We 
developed a model of backscatter response across turbidities and 

FIGURE 2. Left: image taken with the UTOFIA camera and colored to show range information. Right: image of the same scene, taken with  
a regular camera, showing the effects of backscatter. 

FIGURE 3. Peaks in intensity as a function 
of distance (middle and bottom) for points 
in a captured image (top).

FIGURE 4. MATLAB app used to automate data capture.

FIGURE 5. MATLAB app for visualizing UTOFIA image data.

Top: diagram showing a range-gated imaging 
camera. Bottom: images captured at various 
distances from the camera.

FIGURE 1. The UTOFIA camera system.

Range-Gated Imaging

Instead of illuminating a target with a constant stream of light, range- 

gated imaging uses nanosecond-long pulses of light produced by a 

strobed laser. Light reflecting off particles in front of the target returns to 

the camera slightly earlier than light reflecting off the target itself. We 

can suppress backscatter by controlling the camera shutter to capture 

just the light reflected by the target and very little of the light reflected 

by particles in the water. In addition, we can accurately determine the 

distance to the target by measuring the time-of-flight of individual light 

pulses and dividing by the speed of light.

https://www.mathworks.com/company/newsletters/news_notes/2019.html
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FIGURE 6. Red tuna measurement results produced by the  
UTOFIA camera.

FIGURE 7. Visualizations of fish biomass and behavior patterns.

FIGURE 8. Left: images used to track individual fish. Right: image overlaid with length measurement. 

Implementing these changes in C/C++ or a similar language would 
have taken weeks, if not months.

Continued Development

We have completed the first phase of the UTOFIA project: the devel-
opment of the camera and its core software. We are now performing 
additional processing on the image and 3D data for industry-specific 
applications and looking into the second phase of the project: apply-
ing machine learning and deep learning to the images to recognize 
objects and other phenomena. 

The availability of real-time 3D data has opened new possibilities for 
improving processes in the fishery and aquaculture industries, par-
ticularly in the area of automated, quantitative analysis. For example, 
at an aquaculture facility in Spain, we used the camera to identify and 
measure the length of red tuna (Figure 6).

At a research facility in Norway, we used UTOFIA for behavior ana
lysis, tracking individual fish over time to estimate swimming speed 
and patterns (Figure 7).

Meanwhile, in aquaculture trials of the camera, fish and other marine 
life are being observed in low light and high turbidity conditions for 
biomass estimation (Figure 8).

These conditions would have been impenetrable with a traditional 
underwater camera. ◆

We built a MATLAB app for visualizing UTOFIA 

image data. This app includes controls for adjusting 

options and algorithm parameters, including 

contrast, focus, noise removal, and histogram 

equalization. Users can set these parameters 

and immediately see the effects on screen.
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An Airplane That Flies  
Without Moving Parts 

The plane is powered by a battery pack that 
applies a 20,000-volt charge to an array of wires  
that run the 5-meter length of the wings. Airfoils 
behind each wire are charged to 20,000 volts.  

The voltage strips electrons from the nitrogen 
molecules in the air, creating ions that flow 

from the wires and across the airfoils. 

The flow of ions creates “ion drive,” or ionic wind 
as the ions bump into air molecules. 

Ionic propulsion opens new possibilities for 
developing aircraft that are quieter and emission-
free. Meanwhile, conventional jets could improve 
their operation while reducing noise and pollution 
by incorporating the technology today. 

See the plane in flight and learn how MATLAB® was used to test it:

mathworks.com/solid-state-airplane

Researchers at MIT have successfully demonstrated an airplane that has  
no propellers, rockets, or jet turbines. It’s the first plane ever to fly using ionic wind.

Image courtesy MIT Electric Aircraft Initiative.

https://blogs.mathworks.com/headlines/2018/12/10/star-trek-inspired-solid-state-airplane-takes-to-the-sky-without-moving-parts/


MATLAB AND SIMULINK IN THE WORLD

Biology-guided radiotherapy, crop-protecting drones, broadband supertowers, 
intelligent electric scooters ... Combining novel technologies with bold vision, 
engineers at emerging companies are on a mission to improve the lives of  
individuals and entire communities. 

Beaming Mobile Broadband  
to Isolated Communities
Altaeros plans to turn tethered blimps, or  
aerostats, into autonomous telecommunication  
SuperTowers that deliver high-speed broad-
band to the 4 billion people worldwide with-
out access to the internet. One SuperTower 
could service an area that would require up to 
20 conventional cell phone towers. Altaeros 
has completed pilot tests and is working with 
the FCC and the FAA to meet all US feder-
al requirements to operate the SuperTower  
commercially. 

Solving the “Cocktail Party Problem”
Using a hearing aid, smart home appliance, or other speech-recognition  
device in a noisy environment such as a party is challenging because 
the microphone has difficulty distinguishing one voice from all the oth-
ers. Yobe’s Voice Identification System for User Profile Retrieval (VISPR) 
combines artificial intelligence (AI) and signal processing to identify a 
signal’s biometric characteristics, identify individual speakers, and dis-
tinguish speech from noise.

“Our hope is that by accelerating the rollout of rural telecom infrastructure,  
we can help bring underserved communities online for the first time.”

– Igor Braverman, Altaeros

“The ways we have been interacting with machines 
up until now have been artificial because these 
machines haven’t been able to hear us. The natural 
way to communicate with something is to talk to it.”

– Ken Sutton, Yobe

Transforming the  
City Commute
Ather Energy’s 450 electric scooter is 
the first of its kind in India. Designed 
for city driving, the Ather 450 can 
autonomously navigate tight parking 
spots, complicated street systems, and 
stop-and-go traffic. It is powered by a 
high-capacity li-ion battery pack, and 
has a charging range of 46 m and a 
top speed of 50 mph.

“We set out to change the way  
people perceive electric vehicles ... 
In the last five years, we have not only 
built the scooter but an ecosystem for 
an electric vehicle future.” 

– Tarun Mehta, Ather Energy

Riding the Wave of Industry 4.0
Industrial plants are gathering increasing amounts of data as 
they move toward full interconnectivity and automation. Until 
now, this data could only be accessed on a desktop or tablet. 
GlassUpF4 augmented reality (AR) visors enable machine 
operators to access the data on the shop floor—and without 
stopping work. The visors include a video camera, an LED 
lighting system, voice control, and Bluetooth®, as well as a 
gyroscope, compass, and accelerometer. A remote-control 
dashboard allows the user to share their point of view with any 
paired visor for on-the-job training and remote maintenance.

EMERGING COMPANIES 
ON A MISSION

Turning Cancer on Itself
RefleXion Medical is developing the first-ever biology-guided 
radiotherapy system for cancer treatment. The system combines 
a PET scanner and a radiotherapy/radiosurgery machine in a 
novel way. By means of PET tracers, tumors continuously signal 
their location in real time during treatment. This capability could 
one day revolutionize cancer care by enabling clinicians to treat 
multiple tumors in a single session.1

1 The RefleXion machine requires 510(k) clearance and is not yet  
commercially available.

“Using biology to guide radiotherapy, we hope 
to have the means to turn cancer on itself.” 

– Sam Mazin, Ph.D., RefleXion 
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By Cleve Moler, MathWorks

GPU 
ENABLES  
OBSESSION  
WITH 
FRACTALS

CLEVE’S CORNER
Surrounding these two components are infinitely many nearly circu-
lar discs, and discs upon discs, with ever-decreasing diameters. The 
exact locations and shapes of the smallest discs can only be deter-
mined computationally.

It has recently been proved that the Mandelbrot set is mathemati-
cally connected, but the connected region is sometimes so thin that 
we cannot resolve it on a graphics screen or even compute it in a 
reasonable amount of time.

Computing Mandelbrot
The fascinating patterns that we associate with Mandelbrot come 
from the fringe region just outside the set. 

Here is the function that is the core of the computation. The input is 
a complex scalar starting point z0 and a real scalar parameter that I 
call depth. The output is a count kz. If the iteration is terminated 
because z is outside the disc of radius of two, then z was destined 
to become infinite and the count kz can be used as an index into a 
colormap. On the other hand, if z survives depth iterations, then it 
is declared to be within the Mandelbrot set.

function kz = mandelbrot(z0,depth)

    z = z0;

    kz = 0;

    while (z*conj(z) <= 4) & (kz <= depth)

        kz = kz + 1;

        z = z*z + z0;

    end

end

Let’s generate a grid of points in the complex plane covering a square 
of width w, centered at the complex point zc. 

     grid = 512;

     s = w*(-1:1/grid:1);

     [u,v] = meshgrid(s+real(zc),s+imag(zc));

Now comes the only difference between a program that runs on the 
CPU and one that runs on the GPU. To generate the grid on a CPU,

     z0 = u + i*v;

 For the GPU,

     z0 = gpuArray(u + i*v);

Then, for either processor, the statement

     kz = arrayfun(@mandelbrot,z0);

applies the scalar function mandelbrot to all the elements of the 
array z0. On the CPU, this is a vectorized double for loop over the 
grid. On the GPU, the statement is broken down into hundreds of 
individual tasks that run in parallel.

Now let’s look at two extraordinary images derived from the  
Mandelbrot fringe.

On the Fringe
The region known as the Valley of the Seahorses lies between the 
central cardioid and the disc to its left. There are actually two valleys, 
one above and one below the real axis. They meet at the red dot that 
we saw in Figure 1. With a little imagination, you can picture small 
marine creatures living in Figure 2. As we shall see later, the Valley 
also contains buried π.

Because the Mandelbrot set is self-similar, it contains an infinite 

My GPU is an NVIDIA® Titan V, housed in a separate peripheral 
enclosure that is bigger than the laptop and that provides separate 
power and cooling. It is roughly 300 times faster than the CPU for 
computing these fractals, and completely changes how I interact with 
my mandelbrot program. I introduced gpuArray into the pro-
gram and can now use a grid resolution comparable to my screen 
resolution and iterate until fine details in the image become visible. 

Inside the Mandelbrot Set
What happens in Mandelbrot stays in Mandelbrot. The Mandelbrot 
involves a simple iteration with complex numbers, starting at an ini-
tial point z0. The Mandelbrot set is the region in the complex plane 
consisting of the values z0 for which the trajectories defined by

    zk+1 = zk
2 + z0, k = 1, 2, …

FIGURE 1. Sketch of Mandelbrot set geometry. FIGURE 2. Valley of the Seahorses.

remain bounded. That’s it. That’s the entire definition. It’s amazing 
that such a simple definition can produce such fascinating com-
plexity. It has stimulated deep research in mathematics and has 
been the basis for numerous graphics projects, hardware demos,  
and web pages.

Figure 1 is a sketch of the geometry of the Mandelbrot set. The largest 
component is a heart-shaped cardioid, bounded by a curve with the 
parametric equation

    z = eit⁄2  –  e2it⁄4 , -π ≤ t ≤ π

To the left of the cardioid is a circular disc of radius ¼. The cardioid 
and the disc touch at the point marked by the red dot. 	

More about that red dot later.

I am a fractals addict. And I now have a GPU that is enabling my addiction.  
GPUs were originally intended to speed up graphics, but MATLAB® uses 
them to speed up computation. Fractals are graphics that require exten-
sive computation. Perfect candidates for a GPU. 

The GPU has renewed my interest in the Mandelbrot set itself and facil-
itated work with three fractal variants: the “Burning Ship,” the “tower 
of powers,” and the global convergence behavior of Newton’s method.

https://www.mathworks.com/company/newsletters/news_notes/2019.html
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number of miniature Mandelbrots, each with the same shape as the 
big one. The one shown in Figure 3 has a magnification factor of 1010.

Buried π
A remarkable result was discovered in 1991 by Dave Boll, then a 
graduate student at Colorado State University. Boll was investigat-
ing the behavior of the Mandelbrot iteration in the Valley of the 
Seahorses. The valleys become narrower as they approach the axis, 
which they meet at (-3/4,0), the red dot in Figure 1.

We can repeat Boll’s computation on a small grid centered just off 
the axis at the point -3/4 + yi for a tiny value of y and imaginary 
unit i.

    y = 1.0e-07

    zc = -3/4 + y*i

Make the grid just large enough to touch the axis.

    width = 2*y

    grid = 4

Choose depth to be inversely proportional to y, which makes  
it huge.

    depth = 4/y

With these parameters, run the code above. It produces
kz =

40000000 40000000 40000000 40000000 40000000

40000000 40000000 40000000 40000000 40000000

40000000 40000000 31415926 40000000 40000000

40000000 40000000 20943951 40000000 40000000

40000000 40000000 15707963 40000000 40000000

Look at the iteration count in the center of the grid. See a familiar 
value? 

This isn’t a fluke. A 2001 paper by Aaron Klebanoff, “π in the  
Mandelbrot Set,” analyzes a similar computation in the cusp at the 
front of the cardioid.

Next, a curious variant of the Mandelbrot iteration. 

The Burning Ship
The Burning Ship comes from a strange iteration:

    zk+1 = F(zk) + z0, k = 1, 2, …

where

    F(z) = (|Re(z)| + i |Im(z)|)2

I say this is strange because the function F(z) is not analytic. I am 
interested in this iteration because of the uncanny similarities in the 
following pictures.

The initial domain, shown in Figure 4, is a square of width 3.5 cen-
tered at -0.5-0.5i. I’ve inserted an arrow pointing to the region of 
interest in the wake of the ship.

Zoom in on the ship’s wake by a factor of 500 to the point  
-1.861-.002i. Apply the bone colormap to make it appear cold 
instead of burning. Figure 5 shows the resulting fractal next to a 
1915 photograph of Antarctic explorer Ernest Shackleton’s ship  
Endurance frozen in the ice in the Weddell Sea.

Tower of Powers
Start with any complex number, z, and repeatedly exponentiate it.

       z,zz,zzz,zzzz
,  . . .

We can express this as an iteration. Start with y0 = 1 and let

     yk+1=zyk

If z is too big, this iteration will blow up to infinity. For some z, it will 
converge to a finite limit. For example, if z = √2, the yk will converge 
to 2. The most interesting case is when yk approaches a cycle. For 
example, if z is near 2.5+4i, the cycle has length 7.

       2.4684 + 4.0754i

      -0.6216 + 0.3634i

       0.2603 - 0.0184i

       1.4868 + 0.3613i

      -3.4877 + 6.1054i

       7.7632e-06 - 2.6617e-06i

       1.0000 + 0.0000i

       2.4684 + 4.0755i

This cycle length is the basis for the “tower of powers” fractal. Fig-
ure 6 shows the overall fractal. 

Zooming in by a factor of 105 and changing the colormap produces 
the image shown in Figure 7.

FIGURE 3. Miniature Mandelbrot. FIGURE 4. Burning ship, initial domain.
FIGURE 5. Left: zoomed-in view of the Burning Ship’s wake. Right: Hurley’s 1915 photograph of Shackleton’s 
ship frozen in ice in Antarctica.2 Photo credit: Frank Hurley, National Library of Australia, nla.gov.au/nla.obj-
158931586/view.

FIGURE 6. Tower of powers fractal. 

FIGURE 7. Detail of tower of powers fractal. 
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Newton’s Method 
When the starting point of Newton’s method is not close to a zero 
of the function, the global behavior can appear to be unpredictable. 
Contour plots of iteration counts to convergence from a region of 
starting points in the complex plane generate thought-provoking 
fractal images.

The iteration is familiar. Pick a function f(z) with derivative f '(z). 
Start at z0 and let

     zk+1 = zk – f(zk)/f '(zk)

This will eventually converge to a zero of f. Count the number of 
iterations it takes to get close. 

There are many functions (and colormaps) to choose from. My fa-
vorite cubic polynomial is

      f(z) = z3 – 2z – 5

Figure 8 shows the complex plane divided into three regions where 
the iteration converges to one of the three zeroes of the cubic. Be-
tween these regions are areas of intense fractal action, shown in 
black in the figure.

Figure 9 shows the global behavior of Newton’s method seeking the 
zeroes of 

     f(z) = tan(sin(z)) – sin(tan(z))

The function has infinitely many zeroes and an unbounded first de-
rivative.

The function for Figure 10 is

     f(z) = z sin(1/z)

The most prominent blue regions surround the zeroes at ±1/π.

Many of the images described here were new to me—I’d never  
seen them before. Interactive experiments with the GPU made  
them possible. ◆

References
Aaron Klebanoff, “π in the Mandelbrot Set,” Fractals, World Sci-
entific Publishing Company, vol. 9, 2001. http://www.pi-e.de/PDF/
mandel.pdf 

Frank Hurley, 1915, The long, long night [the Endurance in the 
Antarctic winter darkness, trapped in the Weddell Sea, Shackle-
ton expedition, 27 August 1915], National Library of Australia,  
http://nla.gov.au/nla.obj-158931586

FIGURE 8. Newton’s iteration on z3 – 2z – 5.

FIGURE 9. Detail from Newton’s iteration on  
tan(sin(z)) – sin(tan(z)).

FIGURE 10. Detail from Newton’s iteration on z sin(1/z).
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Ettus Research/National  
Instruments: USRP Hardware

The USRP® product line includes tunable 
transceivers with frequencies from DC to 
6 GHz for designing, prototyping, and 
deploying radio communication systems. 
The USRP Bus Series is best for low-cost 
experimentation, while the USRP Networked 
Series, USRP X Series, and standalone 
USRP devices are designed for prototyping 
more sophisticated systems. In addition, the 
USRP Embedded Series is ruggedized for 
field deployment. With Communications 
Toolbox and USRP hardware support 
packages, engineers can use USRP radios 
as peripherals for importing live RF data 
I/O into MATLAB. They can generate code 
with HDL Coder™ for deployment on select 
USRP Embedded Series devices.

ni.com/usrp 
ettus.com

Xilinx: Zynq UltraScale+ RFSoC 

Xilinx® Zynq® UltraScale+™ RFSoC integrates 
multi-gigasample RF data converters with 
the UltraScale architecture. With full support 
for sub-6GHz bands, it is designed for the 
latest wireless infrastructure standards and 
for a range of test and measurement, radar, 
and other high-performance, multichannel 
applications. Engineers can stream RF data 
into and out of MATLAB and Simulink to 
test designs under real-world conditions. 
To prototype and deploy custom designs, 
they can target Zynq UltraScale+ RFSoCs 
with HDL Coder and Embedded Coder®. 
With Avnet® RFSoC Explorer software they 
can characterize RF performance using 
waveforms from 5G Toolbox™, WLAN 
Toolbox™, and LTE Toolbox™ or custom 
waveforms.

xilinx.com/rfsoc

Analog Devices: PlutoSDR

The ADALM-PLUTO Active Learning Module 
(PlutoSDR) is a platform for engineers to 
learn wireless and SDR fundamentals and 
experiment with SDR communications 
schemes. PlutoSDR includes the Analog 
Devices® RF Agile Transceiver (AD9363) and 
the Xilinx Zynq Z-7010 all-programmable 
FPGA. The transceiver features an RF front 
end, a flexible mixed-signal baseband, and 
integrated frequency synthesizers to provide 
tunable operation (70  MHz to 6.0  GHz) 
with channel bandwidths from 200  kHz 
to 56  MHz. A Communications Toolbox™ 
add-on package enables engineers to 
prototype, verify, and test practical wireless 
systems such as FM radio and WLAN signals 
on PlutoSDR under real-world conditions.

analog.com/plutosdr

THIRD-PARTY PRODUCTS

Solutions for Developing Wireless Systems 
with MATLAB and Simulink 
Wireless hardware platforms integrated with MATLAB® and Simulink® enable engineers, hobbyists, and students to move 
from theory to prototyping designs and deploying production systems. Radio frequency (RF) transceivers support a range of 
frequencies and modulation schemes. Programmable software-defined radio (SDR) hardware kits facilitate experimentation 
with new communication methods. New integrated system-on-chip (SoC) devices combine programmable controllers with RF 
converters, enabling engineers to design and deploy 5G, LTE, WLAN, and other wireless systems on a single chip. 

Software-Defined Radio Resources: mathworks.com/sdr

http://www.ni.com/usrp
http://www.ettus.com
http://www.xilinx.com/rfsoc
http://www.analog.com/plutosdr
https://www.mathworks.com/discovery/sdr.html


A BRIEF GUIDE TO 
REINFORCEMENT  
LEARNING
By Emmanouil Tzorakoleftherakis,  
MathWorks

Reinforcement learning has the potential to  
solve tough decision-making problems in  
many applications, including industrial  
automation, autonomous driving,  
video game playing, and robotics.
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In reinforcement learning, a type of machine learning, a computer 
learns to perform a task through repeated interactions with a dynam-
ic environment. This trial-and-error learning approach enables the 
computer to make a series of decisions without human intervention 
and without being explicitly programmed to perform the task. One 
famous example of reinforcement learning in action is AlphaGo, the 
first computer program to defeat a world champion at the game of Go.

Reinforcement learning works with data from a dynamic environ-
ment—in other words, with data that changes based on external con-
ditions, such as weather or traffic flow. The goal of a reinforcement 
learning algorithm is to find a strategy that will generate the optimal 

outcome. The way reinforcement learning achieves this goal is by al-
lowing a piece of software called an agent to explore, interact with, 
and learn from the environment. 

An Automated Driving Example

One important aspect of automated driving is self-parking. The goal 
is for the vehicle computer (agent) to position the car in the correct 
parking spot and with the correct orientation. In this example, the  
environment is everything outside the agent—the dynamics of the 
vehicle, nearby vehicles, weather conditions, and so on. During 
training, the agent uses readings from cameras, GPS, lidar, and oth-
er sensors to generate steering, braking, and acceleration commands 
(actions). To learn how to generate the correct actions from the ob-
servations (policy tuning), the agent repeatedly tries to park the vehi-
cle using trial and error. The correct action is rewarded (reinforced) 
with a numerical signal (Figure 1). 

In this example, training is supervised by a training algorithm. The 
training algorithm is responsible for tuning the agent’s policy based 
on the collected sensor readings, actions, and rewards. After training, 
the vehicle’s computer should be able to park using only the tuned 
policy and the sensor readings. 

Algorithms for Reinforcement Learning 

Many reinforcement learning training algorithms have been de-
veloped to date. Some of the most popular algorithms rely on deep 
neural networks. The biggest advantage of neural networks is that 
they can encode complex behaviors, making it possible to use rein-
forcement learning in applications that would be very challenging to 
tackle with traditional algorithms. 

For example, in autonomous driving, a neural network can replace 
the driver and decide how to turn the steering wheel by simultane-
ously looking at input from multiple sensors, such as camera frames 
and lidar measurements (Figure 2). Without neural networks, the 
problem would be broken down into smaller pieces: a module that 
analyzes the camera input to identify useful features, another mod-
ule that filters the lidar measurements, possibly one component that 
would aim to paint the full picture of the vehicle’s surroundings by 
fusing the sensor outputs, a “driver” module, and so on. 

Reinforcement Learning Workflow

Training an agent using reinforcement learning involves five steps: 

1.	Create the environment. Define the environment within which the 
agent can learn, including the interface between agent and envi-
ronment. The environment can be either a simulation model or a 
real physical system. Simulated environments are usually a good 
first step since they are safer and allow experimentation.

2.	Define the reward. Specify the reward signal that the agent uses to 
measure its performance against the task goals and how this signal 
is calculated from the environment. Reward shaping may require a 
few iterations to get right.

3.	Create the agent. The agent consists of the policy and the training 
algorithm, so you need to: 

•	 Choose a way to represent the policy (for example, using neural 
networks or lookup tables). Consider how you want to structure 
the parameters and logic that make up the decision-making part 
of the agent.

•	 Select the appropriate training algorithm. Most modern rein-
forcement learning algorithms rely on neural networks because 
they are good candidates for large state/action spaces and com-
plex problems.

The goal of a reinforcement 
learning algorithm is to find a 
strategy that will generate the 

optimal outcome.

AGENT

ENVIRONMENT

Reinforcement
Learning
Algorithm

Policy
Observation Action

Reward

FIGURE 1. Reinforcement learning overview.
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4.	Train and validate the agent. Set up training options (such as stop-
ping criteria) and train the agent to tune the policy. The easiest way 
to validate a trained policy is through simulation. 

5.	Deploy the policy. Deploy the trained policy representation using, 
for example, generated C/C++ or CUDA code. No need to worry 
about agents and training algorithms at this point—the policy is a 
standalone decision-making system.

An Iterative Process

Training an agent using reinforcement learning involves a fair 
amount of trial and error. Decisions and results in later stages can 
require you to return to an earlier stage in the learning workflow. 
For example, if the training process does not converge to an optimal 
policy within a reasonable amount of time, you may have to update 
any of the following before retraining the agent:

•	 Training settings

•	 Learning algorithm configuration

•	 Policy representation

•	 Reward signal definition

•	 Action and observation signals

•	 Environment dynamics

Researchers from the University of Southern California’s 
Valero Lab built a simple robotic leg that taught itself how 
to move in just minutes using a reinforcement learning algo-
rithm written in MATLAB® (Figure 3). 

The three-tendon, two-joint limb learns autonomously, first 
by modeling its own dynamic properties and then by using 
reinforcement learning. 

For the physical design, this robotic leg used a tendon ar-
chitecture, much like the muscle and tendon structure that 
powers animals’ movements. Reinforcement learning then 
used the understanding of the dynamics to accomplish the 
goal of walking on a treadmill.

Reinforcement Learning and  
“Motor Babbling”
By combining motor babbling with reinforcement learning, 
the system attempts random motions and learns properties 
of its dynamics through the results of these motions. For 
this research, the team began by letting the system play at 
random, or motor babble. The researchers give the system a 
reward—in this case, moving the treadmill forward—every 
time it performs a given task correctly.  

The resulting algorithm, called G2P (general to particu-
lar), replicates the general problem that biological nervous 
systems face when controlling limbs by learning from the 
movement that occurs when a tendon moves the limb (see 
page 36). It is followed by reinforcing (rewarding) the behav-
ior that is particular to the task. In this case, the task is suc-
cessfully moving the treadmill. The system creates a general 
understanding of its dynamics through motor babbling and 
then masters a desired “particular” task by learning from ev-
ery experience, or G2P. 

The neural network, built with MATLAB and Deep Learning  
Toolbox™, uses the results from the motor babbling to create 
an inverse map between inputs (movement kinematics) and 
outputs (motor activations). The network updates the mod-
el based on each attempt made during the reinforcement 
learning phase to home in on the desired results. It remem-
bers the best result each time, and if a new input creates a 
better result, it overwrites the model with the new settings.

The G2P algorithm can learn a new walking task by itself 
after only 5 minutes of unstructured play. It can then adapt 
to other tasks without any additional programming. 
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When Is Reinforcement Learning the  
Right Approach?

While reinforcement learning is a major advance in machine learn-
ing, it is not always the best approach. Here are three issues to bear in 
mind if you are considering trying it:

•	 It is not sample-efficient. This means that a lot of training is re-
quired to reach acceptable performance. Even for relatively sim-
ple applications, training time can take anywhere from minutes to 
hours or days. AlphaGo was trained by playing millions of games 
nonstop for several days, accumulating thousands of years’ worth 
of human knowledge. 

•	 Setting up the problem correctly can be tricky; many design deci-
sions need to be made, which may require several iterations to get 
right. These decisions include selecting the appropriate architec-
ture for the neural network, tuning hyperparameters, and shaping 
the reward signal. 

•	 A trained deep neural network policy is a “black box,” meaning 
that the internal structure of the network is so complex (often con-
sisting of millions of parameters) that it is almost impossible to 
understand, explain, and evaluate the decisions taken. This makes 
it difficult to establish formal performance guarantees with neural 
network policies. 

If you are working on a time- or safety-critical project, you might 
want to try some alternative method. For example, for control design, 
using a traditional control method would be a good way to start.  

FIGURE 3. Valero Lab’s new robotic limb.  
Image credit: USC.

FIGURE 2. Neural network for autonomous driving.

Real-World Example: Robot Teaches Itself to Walk 
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Image courtesy Kevin R. Coffey, Russell G. Marx, and John F. Neumaier.

University of Washington researchers have 
developed software that uses deep learning 
to detect and analyze the ultrasonic 
vocalizations (USVs) of rats. Inaudible to 
the human ear, USVs are an invaluable 
source of insight into the rat’s state of 
mind. By observing lab rats’ responses to 
various stimuli, researchers hope to better 
understand how drugs change brain activity 
so as to devise more effective treatments for 
anxiety disorders, depression, and addiction 
in humans. 

Rat calls are at such a high frequency 
that even with specialized microphones, 
recordings must be slowed down to make 
them audible. Manually tagging and 
categorizing the slowed-down USVs is 
labor-intensive and error-prone.  

DeepSqueak software automates this 
laborious process by turning an audio 
problem into a visual problem. It translates 
raw audio files into filtered sonograms 
that are fed into a convolutional neural 
network (CNN) as labeled samples 
of vocalizations and noise. Biomimetic 
algorithms in DeepSqueak learn to classify 
the vocalizations and detect patterns, such 
as the order of squeaks and their duration. 

Deep 

Learning 
Deciphers  

What Rats  
Are Saying
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