

Research activities

 ∂

 c_{0}

ĎĂ

🏹 the University of Tokyo

JCAHPC

JCAHPC

Contents

• Location of movies:

https://www.cc.u-tokyo.ac.jp/public/sc20.php

- Research activities to improve HPC
 - SH/HW Optimizations for Next-Generation Supercomputing
 - Development of high-performance iterative solvers for SLEs
 - **HACApK** : *H*-matrices Library for distributed memory systems
 - High Performance Framework for Many-core Clusters
- Research activities utilizing HPC
 - Accelerating Simulations of Computational Fluid Dynamics (CFD)
 - Toward Acceleration of Molecular Dynamics
 - Exploration of dark matter sub-halos by using *N*-body simulations

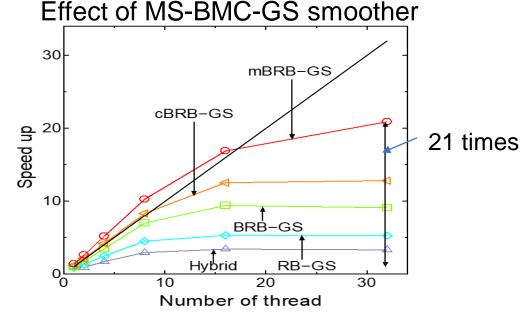
SW/HW Optimizations for Next-Generation Supercomputing

Eishi Arima, Ph.D

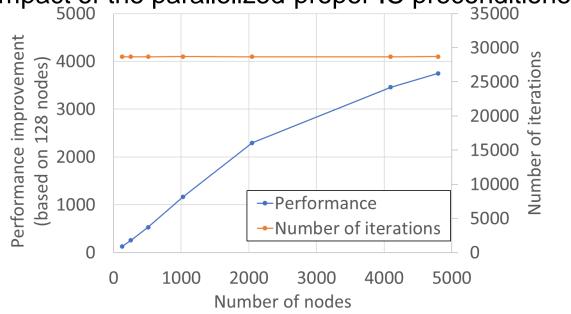
🖂 arima@cc.u-tokyo.ac.jp

My broader research interests are principally in computer architecture, system software, and high performance computing, while the major focus is on software/hardware cooperative optimizations for emerging architectures including such as novel memory subsystems and wide SIMD machines in order to improve performance, energy efficiency, and other perspectives.

Topics:


- Footprint-Aware Power Capping: An in-node power management scheme explicitly aware of problem scale [ISC'20paper][Youtube]
- Large-Scale Power Evaluation: A case for power control features of A64FX processor using over 20K Fugaku nodes [Youtube]
- Pattern-Aware Staging: A compiler-based data optimization technique for hybrid main memories [ISC'20paper][Youtube]
- Classification-Based Caching: A sophisticated cache replacement mechanism useful for modern microprocessors [DSD'20paper]
- Footprint-Aware Co-Scheduling: A scheduler-based approach to improve resource utilizations (ongoing work) [ICPP'19abst][Poster]
- Older Contents: NVRAM-based hardware cache architectures/implementation [DATE'13paper][ICCD'15paper][ISSCC'16paper]
 Grants:
- PI, "Coscheduling Methods for Next-Generation Large-Scaled Systems with Heterogeneous Memories", JSPS Grant-in-Aid for Early-Career Scientist, 4.29M JPY, FY2020-FY2021
- PI, "Exploiting High-Bandwidth and Large-Capacity on Hybrid Main Memories through Pattern-Aware Optimization", JSPS Grant-in-Aid for Early-Career Scientist, 4.16M JPY, FY2018-FY2019
- PI, "Memory System Optimization for Energy Efficient Big Data Processing", JSPS Grant-in-Aid for Research Activity Start-up, 2.99M JPY, FY2016-FY2017

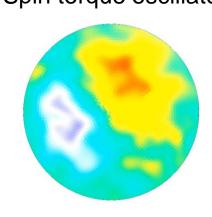
Professional Activities:

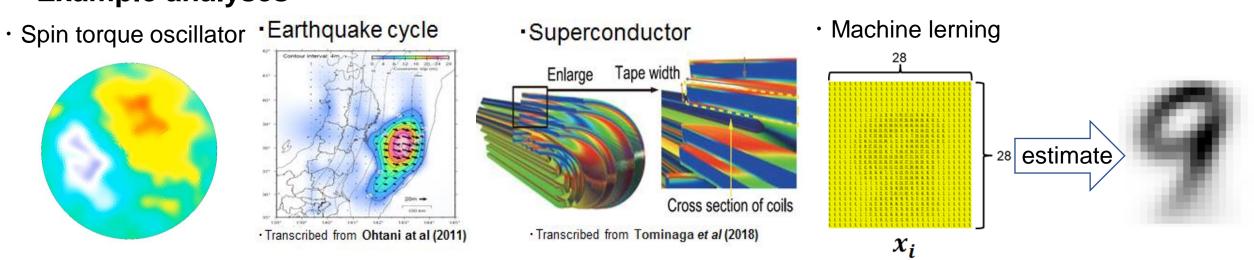

- ACM CF'21 Special Session Chair, ACM CF'20 Program Chair, IEEE Cluster'19 Publications Chair, IEEE NVMSA'18 Web Chair
- Program Committee: IPDPS'21, HPC ASIA'21, HiPC'20, IA^3@SC'20, CANDAR'20, Cluster'20 (Posters), ISC'20 PhD Forum, CANDAR'18, NVMSA'18, ICPP'18, SCAsia'18, HPC ASIA'18, CANDAR'17, NVMSA'17, (xSIG'19,'20)

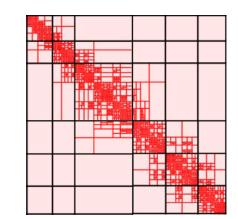
Development of high-performance iterative solvers for SLEs

- PI: Masatoshi Kawai
- Research of iterative methods for
 ✓ Static and dynamic analysis
 ✓ Eigenvalue problems
 with high-performance
 - ✓ Multigrid method, preconditioner
 ✓ IC preconditioner
- Outcomes
 - ✓ Multiplicative-Schwartz type Block multi-color GS smoother
 ✓ SIMDization of the GS method
 ✓ Massively parallelization of a proper IC preconditioner

Impact of the parallelized proper IC preconditioner


HACAPK : *H*-matrices Library for distributed memory systems


Ida, Akihiro (🖂 ida@cc.u-Tokyo.ac.jp)


- \blacktriangleright $\mathcal{H}ACApK$ library :
 - enables us to conduct large-scale simulations based on the boudary integral equation method.
 - is developed for CPU-based clusters, and partialy ported to multi-GPU platforms.
 - is an open-source software (MIT license).
- Downloaded from web-site :

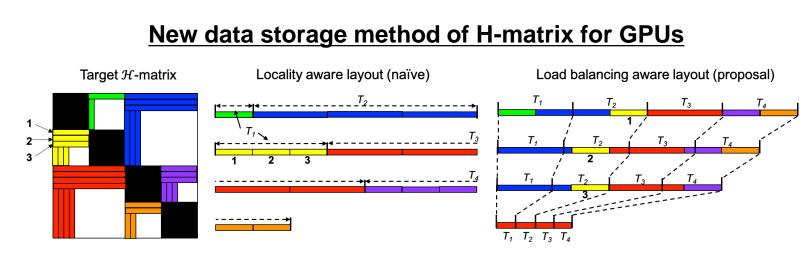
https://github.com/Post-Peta-Crest/ppOpenHPC/tree/MATH/HACApK

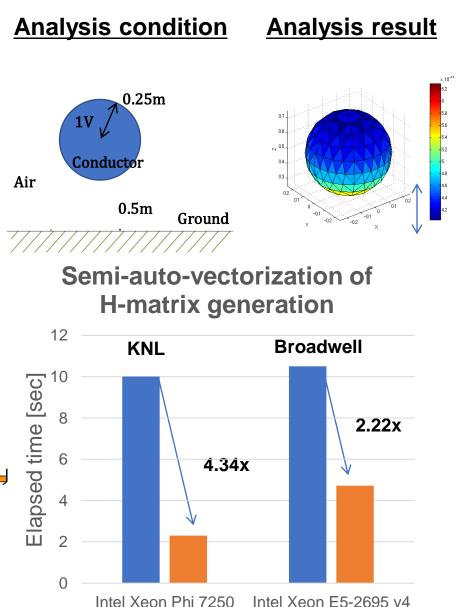
Example analyses

Available formats

- \cdot (Lattice) \mathcal{H} -matrices
- · Block low rank

Available operations

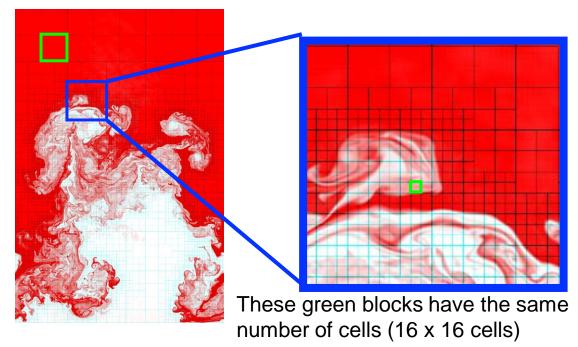

- Matrix-vector product
- · LU factorization
- · QR factortrization


High Performance Framework for Many-core Clusters

Tetsuya Hoshino

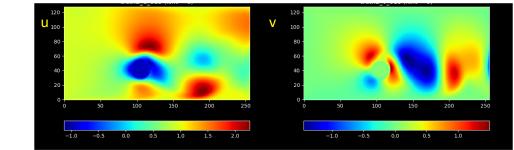
Research topics

- Extended OpenACC compiler framework for data layout optimization
- ✓ Semi-auto-vectorization for HACApK library
- Load-balancing-aware algorithm of Hmatrices for GPUs

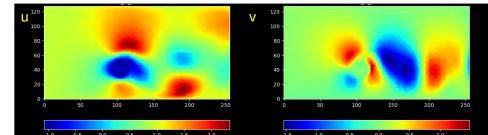

Accelerating Simulations of Computational Fluid Dynamics (CFD)

Takashi Shimokawabe

Research topics


- Large-scale CFD simulations on GPU supercomputers
- Adaptive mesh refinement (AMR) framework for GPU supercomputers
- Machine-learning-based fast surrogate model for CFD simulations

Rayleigh-Taylor Instability Simulation

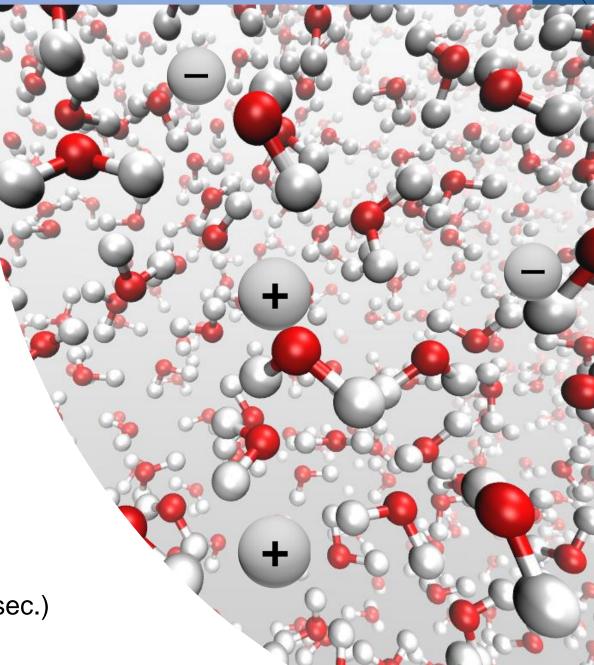


CFD results predicted by deep learning

Ground truth (LBM simulation)

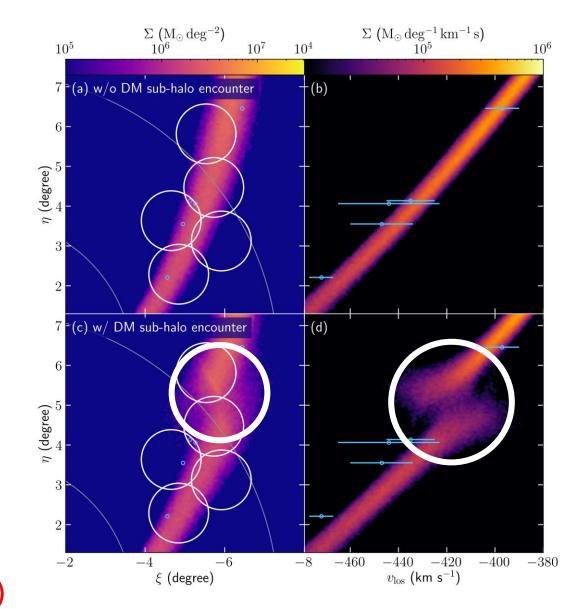
Prediction (DNN)

Toward Acceleration of Molecular Dynamics


Hayato Shiba

Molecular Dynamics for Liquid / Soft Matter

Current research topics


superparallel molecular simulations & enhanced sampling methods for electrolyte solutions

- Machine-learning-assisted path sampling of reaction coordinate beyond limitation of communication wall
- Long-wave phenomena on interfaces with solvated ions toward the mesoscale (billion-atom + microsec.)

Exploration of dark matter sub-halos by using N-body simulations

- PI: Yohei MIKI
- Missing satellite problem: cosmological simulations overproduce dark matter (DM) sub-halos [$\mathcal{O}(100)$] compared to observed satellites around Milky Way-size galaxies [$\mathcal{O}(10)$]
 - Hypothesis: ~10% DM sub-halos succeeded to form stars
- Challenge: observational estimation of DM sub-halo counts
 - Gap detection in stellar streams
 - Feasibility studies using gravitational N-body simulations are on-going (→)

