
HPE CRAY PROGRAMMING
ENVIRONMENT
An essential toolset for organizations developing their own HPC codes

Brochure

Brochure Page 2

Improve performance of your applications with HPE Cray
Programming Environment, a fully integrated software suite with
compilers, tools, and libraries designed to increase programmer
productivity, application scalability, and performance.

Check if the document is available
in the language of your choice.

ABOUT HPE CRAY PROGRAMMING ENVIRONMENT

HPE Cray Programming Environment suite offers programmers a comprehensive set of
tools for developing, porting, debugging, and tuning of applications.

The programming environment simplifies the transition to new hardware architectures and
configurations by automatically applying optimizations on HPC applications that use existing
programming models with a simple recompile.

The environment provides:

•	Compilers, programming languages, and models

•	Scientific, math, and I/O libraries

•	Deep learning plug-in

•	Debugging tools

•	Profiling and performance optimization tools

Compile

Application

Application
information

Debug
information

Export/Import
Program
Analysis

Performance
Analysis

Queries for
Application
Optimization

Compiler
information

Port

Debug

Analyze

3rd party HPE–authored

Debugging

Stack Trace Analysis
Tool

Stack tracing at scale

Valgrind for HPC
Memory debugging at scale

Tool for Abnormal
Termination Processing

Manage core files at scale

GDB for HPC
Parallelized gdb for HPC

TotalView

DDT

Setup & Runtime

Environment Setup

Modules/Lmod

Tool Enablement
(for Spack, CMake,

EasyBuild, etc.)

Development

LAPACK & ScaLAPACK

LibSci (BLAS)

FFTW

Deep Learning Plug-in

LibSci_ACC

IRT

NetCDF HDF5

DL/AI Tools

I/O Libraries

Optimized Libraries

Programming Languages

C

Programming Environments

Compiling Environment

NVIDIA HPC SDK

Intel® Programming
Environment

AMD Programming
Environment

OpenMP | OpenACC 2.0

AMD ROCm HIP | NVIDIA CUDA

UPC | Fortran co-arrays

HPE Cray MPI

SHMEM

Programming Models

Python

Comparative Debugger
Compare two versions of

an application

Fortran

C++ R Performance Analysis
Tool (PAT)

Whole program
performance analysis,
exposing wide set of

indicators, identifying
bottlenecks, and

automatically generating
suggestions to improve

performance

Performance
Analysis &

Optimization

Visualization Tool

Quick assessment of
severity of issues

Code Parallelization
Assistant

Reveal hidden potential
of an application via
code restructuring

Supported systems:

• HPE Cray
 supercomputers

• HPE Apollo 2000 &
 Apollo 80 systems

• HPE ProLiant DL

• Legacy Cray systems

HPE value-added to 3rd party

Adios 2

Global Arrays

GNU

FIGURE 1. Overview of tools included in HPE Cray Programming Environment

https://psnow.ext.hpe.com/collection-resources/a50002303ENW

WHY HPE CRAY PROGRAMMING ENVIRONMENT?

Complete toolchain Cross platform Programmability Scalability Holistic support
From HPC experts

for HPC experts

Comprehensive set of
tools for the whole

application
development process
offering full system

view.

Providing programing
environment

consistency across
HPE and HPE Cray
HPC platforms for
easy porting and

optimized
performance from all

types of HPE HPC
architectures.

Offering users
intuitive behavior,

automation of tasks
and best

performance for their
applications with the

least amount of effort.

Improving
performance of
applications on

systems of any size—
up to Exascale
deployments.

HPE Pointnext
Services supports the
whole suite, not just

the tools we
developed for

investment
protection.

Developed for over
30 years in close
interaction and

contributions from
our users.

COMPILING ENVIRONMENT, PROGRAMMING LANGUAGES, AND MODELS

Compiling environment
Our Fortran, C, and C++ compilers are designed to help extract maximum performance from the systems
regardless of the underlying architecture—supporting x86-64 processors (both Intel and AMD), Arm®-based
HPC processors as well as accelerators.

The compilers identify regions of computation that are either sequential scalar or vector parallel, and automatically
exploit these capabilities for the targeted system.

The compiler gives programmers optimization feedback with an annotated listing of source code for easier
application tuning. The compiler also integrates with the performance optimization tools in the suite to help
users get a better understanding of what changes will produce the ideal performant code.

The suite also includes integration with GNU, Intel, AMD, Arm Allinea, and NVIDIA® programming
environments so developers can choose between multiple compilers and still use the libraries, debuggers, and
performance analysis tools included in our suite to help optimize application performance.

We focus on standards compliance for code safety, application portability, and investment protection—our
compilers support standard programming languages (Coarray Fortran, C/C++, and UPC) and standard programming
models such as OpenMP and OpenACC.

Scalable communication libraries (MPI and SHMEM)
The suite offers full support for porting and developing distributed memory applications using HPE Cray MPI or
performance-optimized SHMEM.

•	HPE Cray MPI is an MPICH ABI compatible library that is tuned for Intel, AMD, and Arm CPUs and variety of GPUs.
It is customized for low latency and high bandwidth, both on-node and off-node, for point-to-point and collective
communications. Strategic optimizations for MPI I/O, MPI_THREAD_MULTIPLE, and remote memory access (RMA),
and integration with the performance analysis tools in the suite contribute to deliver ideal application performance
for today’s HPC codes.

Brochure Page 3

SCIENTIFIC, MATH, AND I/O LIBRARIES

The suite offers comprehensive collection of highly tuned linear algebra subroutines designed to help extract
maximum performance from the system with the least amount of effort.

Customized LibSci (including BLAS, LAPACK, and ScaLAPACK), our iterative refinement toolkit, and LibSci_ACC
(accelerated BLAS, and LAPACK) are designed to take full advantage of the underlying hardware, optimizing for
both intra-node and inter-node performance on all HPE and HPE Cray HPC systems.

Using auto-tuning and adaptation, the libraries choose the known best algorithms at runtime. They also feature
simplified interfaces into complex software (no source code changes required to access optimized algorithms) and
integrate with the compiling environment for better productivity.

NetCDF and HDF5 I/O libraries are built with the supported compiling environments and included in the suite for
convenience.

DEEP LEARNING PLUG-IN

With the plug-in, data scientists can easily perform deep learning training on HPE and HPE Cray systems—utilizing
either CPUs (Intel or AMD) or GPUs. The tool helps them achieve optimized scaling and performance for multiple
machine learning frameworks, such as TensorFlow™ and PyTorch.

The plug-in automatically determines which nodes to use, removing the burden of figuring out how many to use and
where to put them. It is easy to launch—the users do not need to specify hosts and port numbers for workers. Adding
parallelism is simple—data scientists can start from a serial training script and include the plug-in for parallelism.

DEBUGGING TOOLS

The HPE Cray Programming Environment offers traditional debuggers combined with new innovative techniques.
Together, these technologies allow users to address debugging problems at a broader range and scale than
conventional techniques. This means that programmers can spend less time debugging and more time creating.

Included are:

•	Comparative debugger: This market-unique tool helps programmers uncover issue by running two applications
side by side. If the values of the selected data structures diverge, the user is notified that an error may exist. This
capability is useful for locating errors that are introduced when applications are modified through code,
compiler, or library changes, and for application porting between architectures (for example, between CPUs and
GPUs) or programming models.

•	GDB for HPC is based on the popular GDB command-line debugger used to debug applications compiled with
Fortran, C, and C++ compilers with enhancements to provide a GDB debugging experience for applications that
run at scale across many nodes. The tool enables users to run a traditional scalable debugging session—either
by launching an application or by attaching it to an already-running application. A GDB for HPC debug session
retrieves debug information from thousands of processes and presents merged backtraces and data, removing
vast amounts of duplicate information.

•	Valgrind for HPC: Parallel memory analysis tool based on Valgrind debugger used for applications compiled
with Fortran, C, and C++ compilers—it aggregates common errors into a single output record for easier analysis of
potential memory problems within applications that run at scale.

•	Stack Trace Analysis Tool (STAT): Helps developers identify if an application is hung or still making progress
when running. Generates a merged backtrace for applications so users can get a better insight into application
behavior at a function level.

•	Tool for abnormal termination processing (ATP): When an application crashes, the tool detects a signal and
generates a merged backtrace resulting in a minimal core file set so programmers do not have to plough through
an enormous number of core files when debugging the application.

We also offer support for traditional debugging mechanisms, via integration with TotalView by Perforce and Arm Forge.

Brochure Page 4

PERFORMANCE ANALYSIS AND OPTIMIZATION TOOLS

Comprehensive collection of tools designed to reduce the time and effort associated with porting and tuning of
applications on HPE and HPE Cray systems.

We offer different tools and experiments to fit different developer needs and choice of interfaces for ease of use.

•	Performance Analysis Tool (PAT) brings valuable insight when analyzing bottlenecks to improve performance
of applications that run across the whole system. The tool exposes wide set of indicators, such as computation,
communication, I/O, and memory statistics and displays a program’s top time-consumers and bottlenecks (via
unique and critical load balance analysis) for jobs at scale. It then automatically generates observations and
suggestions to improve code performance.

 	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 2. System statistics/performance indicators generated by PAT

•	As ease of use is an important feature of the tool suite, both simple and advanced interfaces are available, offering
both a simple path to get started and a wealth of capability for analyzing the most complex codes.

•	Programmers can quickly assess the type and severity of the performance issues by using our visualization tool
which complements text reports and summarizes programs’ performance data in graphs and charts, allowing users
to easily drill down to get to the bottom of issues.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
FIGURE 3. Overview of the GPU data in the visualization tool

Brochure Page 5

Make the right purchase decision.
Contact our presales specialists.

Chat CallEmail

Get updates

•	Code parallelization assistant helps developers reveal hidden potential of their application via code
restructuring.

The tool extends our existing performance analysis, and visualization technology by combining performance
statistics and program source code visualization with our compiling environment optimization feedback. This tool
can easily navigate through source code to highlighted dependencies or bottlenecks during the optimization phase
of program development or porting.

FIGURE 4. Parallelization assistant highlights bottlenecks and dependencies and brings up issues which need user’s attention

Using the program library provided by our compiling environment and the performance data collected by our
performance, measurement, and analysis tools, the user can navigate through their source code to understand
which high-level loops could benefit from OpenMP parallelism. Code parallelization assistant provides dependency
and variable scoping information for those loops and assists the user with creating parallel directives.

LEARN MORE AT
HPE Cray Programming Environment Product Page

Brochure

© Copyright 2020 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change
without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty.
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

AMD is a trademark of Advanced Micro Devices, Inc. Arm is a registered trademark of ARM Limited. Intel is a trademark of Intel
Corporation in the U.S. and other countries. NVIDIA is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and
other countries. All third-party marks are property of their respective owners.

a50002303ENW, July 2020

https://www.hpe.com/global/hpechat/index.html?jumpid=Collaterals_a50002303ENW
https://www.hpe.com/us/en/contact-hpe.html
mailto:contactsales@hpe.com
http://www.hpe.com/info/getupdated
https://buy.hpe.com/us/en/p/1012707351

